
1  

AEROPUERTO INTERNACIONAL 
JORGE CHÁVEZ 

Avenida Elmer Faucett s/n – Callao 
Edificio Central, Piso 7 

T (511) 517 3100 
www.lima-airport.com 

 
 

C-LAP-GPF-2024-0179 

Callao, 19 de Noviembre de 2024 

Señores 
ORGANISMO SUPERVISOR DE LA INVERSIÓN EN INFRAESTRUCTURA 
DE TRANSPORTE DE USO PÚBLICO – OSITRAN 
Presente. – 

 

Atención         :         Dra. Veronica Zambrano 
Presidenta Ejecutiva 

 

Sr. Ricardo Quesada Oré 
Gerente de Regulación y Estudios Económicos 

 
Asunto :       Propuesta: Revisión tarifaria de oficio del Factor de Productividad 

en el Terminal Portuario General de San Martín – Pisco para el 
periodo 2025-2030 

 

Referencia      :        a) Resolución de Presidencia N° 0065-2024-PD-OSITRAN 
b) Informe “Propuesta: Revisión tarifaria de oficio del Factor de 
Productividad en el Terminal Portuario General San Martín – Pisco 
para el periodo 2025-2030” 

 
 

De nuestra consideración, 
 

Nos dirigimos a ustedes con relación a la resolución a) de la referencia, mediante la cual 
se aprueba el informe de la referencia b) y se otorga un plazo para que los interesados 
remitan por escrito sus comentarios o sugerencias al OSITRAN. Al respecto, Lima 
Airport Partners S.R.L. (LAP) tiene los siguientes comentarios. 

 
De acuerdo con el informe de la referencia b), en el “capítulo V. Cálculo del factor de 
productividad elaborado por estas Gerencias”, subcapítulo “V.1.2. Cálculo del índice de 
cantidades de insumos”, sección “V.1.2.3. Capital” se indica lo siguiente: 

 
“171. Para el cálculo de las unidades de capital, se procede a dividir el valor de stock de 
capital entre un precio representativo para cada categoría de activo, toda vez que no se 
dispone de la información de precios específicos de cada categoría, es decir, se hace 
una construcción indirecta de la serie de unidades de capital. 

 
172. De este modo, se emplea como variable proxy del precio representativo de las 
categorías de activos al IPME y al IPMC, de acuerdo con la naturaleza del activo 
analizado. Se considera como precio representativo al valor promedio del índice elegido 
mensual de enero a diciembre de cada año; sin embargo, dado que el valor del stock de 
capital se encuentra expresado en dólares, resulta necesario realizar un ajuste por tipo 
de cambio. Las series antes señaladas, así como los respectivos ajustes por tipo de 
cambio, son presentados en el cuadro siguiente […] 

 
[…] 173. En tal sentido, se ha procedido a identificar los principales componentes de 
cada uno de los activos considerados en el cálculo del factor de productividad del 
TPGSM, ello con el objetivo de seleccionar el índice de precios (IPME o IPMC) que debe 
ser considerado como una variable proxy de su precio. 
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174. Cabe indicar que los índices de precios (IPME e IPMC) son utilizados también 
para estimar el precio del capital. Sobre ello, al estimar el precio del capital de la 
categoría de activos fijos “Instalaciones” y de algunas de las categorías de activos 
intangibles, se observa que el precio de capital, en el año 2022, resulta ser 
negativo, lo cual, en el presente caso no tiene interpretación económica. Con la 
finalidad de corregir ello, para dichas categorías se utilizará el IPME ajustado por 
tipo de cambio como índice de precios.1 En el siguiente cuadro se detalla el índice de 
precios que se utiliza para deflactar cada categoría de activo de la serie de stock de 
capital del TPGSM.” 

 
Como se puede observar, OSITRAN utiliza el Índice de Precio de Maquinaria y Equipo 
(IPME) y el Índice de Precios de Materiales de Construcción (IPMC) para calcular las 
cantidades de Capital con el objetivo de calcular, posteriormente, el precio de alquiler 
de capital a partir de la fórmula planteada por Christensen y Jorgenson (1969), la cual 
se detalla a continuación: 

 
 

 
Al respecto, el regulador manifiesta que para la categoría de activos fijos “Instalaciones” 
y para algunas de las categorías de activos intangibles no es posible utilizar el IPMC 
debido a que el precio de alquiler de capital resulta negativo, lo cual, no tendría 
interpretación económica. Por lo tanto, en su lugar, el IPMC es reemplazado por el 
IPME. De esta manera, no se registra un precio negativo. Sin embargo, no resulta ser 
tan consistente utilizar el Índice de Precios de Maquinaria y Equipo (IPME) sobre 
aquellos activos que se encuentran relacionados a Infraestructura. Lo más adecuado 
sería utilizar el Índice de Precios de Materiales de Construcción (IPMC). 

 

Para analizar la dificultad planteada, es importante centrarse en el componente 
“(𝜌𝑚,𝑡−𝜌𝑚,𝑡−1)” de la fórmula antes mencionada, ya que dada la naturaleza de la 
fórmula, existe la posibilidad de que una alta variación entre los índices de precios 
resulte en un precio proxy de capital negativo. Aunque el cálculo matemático pueda 
arrojar un número negativo, en la práctica económica, el precio de capital no puede ser 
negativo. Por tanto, un resultado cercano menor a cero indica una situación límite en la 
que el valor del capital es mínimo. Ante este escenario, podría rescatarse el resultado 
de la fórmula original mediante metodologías desarrolladas previamente en situaciones 
similares. Para ello, el regulador podría utilizar las siguientes metodologías para 
determinar el precio proxy del alquiler de capital: 

 

• Transformación seno hiperbólico de área 

P𝑝𝑟𝑜𝑥𝑦 = 𝑠𝑖𝑛ℎ-1 (𝑝) = 𝑙𝑛 (𝑝 + √p2 + 1) ≈ 𝑠𝑖𝑔𝑛 (𝑝) ∗ 𝑙𝑛(2|𝑝|) 
 

1 En el caso de las categorías “IC: Reubicación de las torres de enfilamiento del Terminal” y “IC: Cerco 
perimétrico norte” no se aprecian precios negativos del capital, por lo que se utilizará el IPMC ajustado por 
el tipo de cambio. 
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• Transformación seno-arcoseno hiperbólico 

P𝑝𝑟𝑜𝑥𝑦 = 𝑠𝑖𝑛ℎ (𝜀 + 𝜎 ∗ 𝑎𝑟𝑐𝑠𝑖𝑛ℎ(𝑝)) 

 

• Transformación logarítmica 

P𝑝𝑟𝑜𝑥𝑦 = ln (𝑝 − 𝜀) 
 

Enviamos en adjunto, literatura que ha analizado este tipo de situaciones relacionadas 
a precios negativos como Sewalt y De Jong (2003), Jones y Pewsey (2009) y Crastes 
(2021), la cual debería ser utilizada por el regulador para evitar asignar índices de 
precios que no se encuentran asociados a la característica del activo. 

 

Agradeciendo de antemano la atención a la presente, quedamos de ustedes. 

Atentamente, 

LIMA AIRPORT PARTNERS S.R.L. 

 
 
 
 
 

MARIA ELENA REAÑO 
Apoderada 

 
Adj. 

Sewalt y De Jong (2003) 

Jones y Pewsey (2009) 

Crastes (2021) 
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LIBERALISATION AND DEREGULATION in electricity

markets have resulted in active trading between generators,

suppliers, distributors, large end users and several intermedi-

aries for hedging and speculation purposes. In sharp contrast

to conventional markets trading has been clearly segmented,

both geographically as well as in terms of delivery period.

Geographical segmentation is the result of limited cross bor-

der transport opportunities and different regulations per

country. Most noteworthy however is the segmentation that is

due to the non-storability of the commodity: separate trading

mechanisms and markets exist for electricity with different

periods to delivery, ranging from long-term forward markets

to (very short-term) imbalance markets. Each market segment

is characterised by distinct price characteristics that provide

a challenge for risk management, derivative valuation and

asset optimisation. In this paper we clarify the properties of

the market segments and focus on the extraordinary charac-

teristics of very short-term prices. We highlight the implica-

tions for option valuation, which provides the means for valu-

ing flexible generation assets.

The interest in option valuation stems from the limited liq-

uidity and large pricing differences between electricity

options. Therefore, market prices do not provide the desired

benchmark on which to base strategic decisions. For example,

if a generation plant can be treated as an option on spot elec-

tricity prices, then we would ideally value this plant based on

tradable options. The illiquid market and the lack of valuation

benchmarks is partially due to the inapplicability of standard

pricing models to price electricity options with short periods

to delivery, especially when the short-term electricity prices

become negative. This motivates the growing attention for

option pricing models for electricity in general and our focus

in this paper on the phenomenon of negative prices. Option

premiums on short-term prices are much higher than can be

expected from standard pricing models as Black-Scholes

(1973) or Black (1976) 2 . We therefore analyse the require-

ments that a pricing model should fulfil for the shortest-term

(quarter-hourly imbalance) prices. An appropriate price model

would also improve strategic decisions on flexible real assets.

The Forward Market 
The ongoing liberalisation of electricity markets has

resulted in a relatively liquid trade of longer-term contracts

between several market participants. Popular forward con-

tracts are week-ahead, coming months, quarters and years.

The major part of the trading is settled OTC where the par-

ties come together, sometimes facilitated by brokers. Even

though some exchanges are quite successful (e.g. Nord Pool,

EEX), in those markets OTC trades still form a major portion

of the total trading in forwards. OTC trading is facilitated

with the adoption of master agreements, which increasingly

follow the standards of the European Federation of Energy

Traders (EFET). In addition, information providers such as

Platt’s and Heren provide some transparency by publishing

forward prices. 

Market participants mainly organise electricity trading on

a country-by-country basis in the form of country desks,

because national grids still have their own procedures and

limited exchange capacities between them. Prices in the for-

ward market are quite well comparable to those in other

commodity markets. Volatility is limited and forward returns

conform to the normality assumptions pretty well, as shown

in Table 1: skewness and kurtosis do not deviate significant-

ly from 0, so prices exhibit few outliers. Because of this price

behaviour and because hedging with forwards is possible to

some extent, the standard Black (1976) formula may be

applied to value European-style call and put options on for-

wards .3 Those instruments are traded on the Nord Pool

exchange and OTC, and provide a means to manage longer-

term risks. Apart from limited excess kurtosis and skewness,

Table 1 also highlights a first indication of term-structure

effects in forward prices: shorter-term forwards experience

Negative Prices in
Electricity Markets
In this paper we describe how liberalisation has lead to the segmentation of trading
opportunities for electricity with different periods to delivery. We clarify the price
characteristics in each segment, including the extreme volatility in short-term prices
and the phenomenon that electricity prices can become negative close to the time of
delivery. With the Dutch market as an example, we show the implications for risk
management and the valuation of derivatives. We argue that a distinct price model is
required for risk management and derivative valuation in each market segment.
Derivative valuation goes beyond the financial contract itself and can be very useful for
taking strategic decisions on flexible generation assets.
By MICHAEL SEWALT & CYRIEL DE JONG 1

> Each market segment is characterised by
distinct price characteristics <
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switches in which spikes are modelled as a separate price

process. The advantage of a separate spike regime is that it

better reflects the temporary nature of spikes. An additional

advantage of this approach is that it allows (under certain

conditions) for the derivation of closed-form formulas for

European-style options on spot prices. Those formulas or

simulation-based methods may be applied to value flexible

end-user contracts with caps or floors, tradable daily exercis-

able options and generation assets with the flexibility to man-

age output on a day-to-day level. Outcomes of those

approaches will generally be quite distinctive from standard

option-formulas and yield much higher values especially for

out-of-the-money call options. This may lead to price caps

being sold too cheaply and flexibility in energy generation

plants being valued too low.

Simply modelling baseload or peakload prices is not suffi-

cient for some options and the valuation of flexible genera-

tion: hourly prices should instead be modelled. Since spikes

normally last for several hours in a row and revert back to

normal levels more gradually, it is not so convenient to trans-

fer spikes on an hourly level to a spike regime. Approaches

that have been applied instead are state-of-the-art time-

series models (Guthrie and Videbeck (2002), Cuaresma et al

(2002)). The main challenge here is to accurately capture the

interdependencies between prices on the same day and

between similar hours on different days. In Table 2 we

observe for example that the correlation between hours that

are 7 hours apart is lower (0.21) than between a single hour

on consecutive days (0.61). A similar complex interdependen-

cy exists in volatilities of prices (final column). Finally, some

sort of jump behaviour (positive for peak-hours, negative for

off-peak hours) may be required to capture the outliers.

Monte Carlo simulations of hourly price models are used in

risk management applications and form the basis for the val-

higher volatility than longer-term forwards. This effect is

much stronger in electricity markets than most other mar-

kets and is due to the non-storability of the commodity,

which prevents arbitrage between periods. 

The Spot Market
Forward trading is mostly organised without the need to

trade on an exchange. On the other hand, spot trading for

day-ahead delivery is largely conducted on organised spot

markets such as (in Europe) those from Nord Pool, EEX, APX,

UKPX, COMEL and Powernext. The advantage of centralised

markets is not only an increase of price transparency, but

also a reduction in credit and counterparty risk. In the

Netherlands for example, the APX takes full responsibility for

counterparty risk, like a general clearing institute, and facili-

tates the exchange of power. On a daily basis potential buy-

ers and sellers can hand in bids and offers for power on a

specific hour for the day ahead. Based on the resulting sup-

ply and demand curves a market clearing price and a market

clearing volume are determined for every single hour the

next day. A transaction will be settled by the APX when a bid

or ask (buy or sell) is hit. The most important function of the

day-ahead market is giving market participants the opportu-

nity to balance their own delivery or procurement on a short-

term basis. Both before and after settlement on the

exchange spot trading also takes place on OTC markets.

However, the advantage of the exchange is that it looks after

the financial settlement and guarantees the physical delivery.

Therefore, the counterparty risk is fully reduced in contrast

with bilateral agreements.

Being much closer to delivery than forward contracts, day-

ahead spot price dynamics are inherently different from for-

ward price dynamics. Since spot price changes are not nor-

mally distributed, the standard Black (1976) model is inap-

propriate for valuing (daily exercisable) options, caps, floors

or collars. Distinguishing features of the prices are a strong

level of mean-reversion, seasonality (across seasons and

weekdays), extreme and possibly time-varying volatility

(reaching daily levels of 1,000%), and occasional spikes.

These characteristics have extensively been analysed by aca-

demics and practitioners alike and different modelling

approaches have been proposed. A common approach is a

mean-reverting model with stochastic jumps to account for

occasional spikes. Since spikes are often very short-lived, the

stochastic jump process (which assumes a long-lasting

impact of spikes) does not work well for some electricity spot

markets. A recent development is the application of regime-

> Prices in the forward market are quite well
comparable to those in other commodity markets <

VVoollaattiilliittyy SSkkeewwnneessss EExxcceessss
KKuurrttoossiiss

MM11 3322..99%% --00..3366 --22..1144

MM22 2200..33%% --00..8833 11..0000

MM33 1144..33%% --00..0011 --00..1122

QQ11 1155..77%% 00..0044 --00..0022

QQ22 88..66%% --00..1188 22..6644

QQ33 88..77%% --00..2255 11..0055

YY11 77..44%% 00..1133 22..1111
Forward statistics are based on weekly (5-daily) returns of German baseload

contracts (volatility is annualised). Period: Jan 2002 – Mar 2003. 

Source: Platts/Moneyline.

Table 1. Return Properties of Electricity Contracts

> The Black (1976) model is inappropriate for
valuing daily exercisable options <

TTiimmee  LLaagg CCoorrrreellaattiioonn
PPrriiccee SSqquuaarreedd  PPrriiccee

11 00..7788 00..6633

22 00..6633 00..4488

33 00..5511 00..3377

44 00..4444 00..3344

55 00..3344 00..2233

66 00..2277 00..2200

77 00..2211 00..1166

2244 00..6611 00..6600

4488 00..3366 00..3311
Correlations between hourly spot prices and squared spot prices on the

Amsterdam Power Exchange.

Table 2. Correlations Between Hourly Spot Prices
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uation and optimal management of assets that may be oper-

ated on an hourly level.

The Imbalance Market
In order to keep an electricity network functioning, the bal-

ance of power (supply equals demand) must be maintained

at all times. In the Netherlands for example 34 market par-

ticipants have the so-called ‘programme responsibility’,

which includes the requirement to supply a daily schedule of

expected supply and demand on a quarter-hourly basis. Just

before the electricity is generated and consumed, the net-

work operator TenneT settles any discrepancies between

forecasted and actual supply and demand (see Figure 1 for

the discrepancies on 9th March 2003). Apart from its own

emergency capacity that it may use, the network operator

organises an imbalance market on a daily basis to 'smooth'

the discrepancies. On this market variable capacity may be

offered to TenneT: participants can bid on both increasing or

decreasing their supply or demand (Figure 2). A quarter of

an hour before delivery, TenneT determines the required

capacity. This results in 96 imbalance prices for each of the

96 daily quarters of an hour. Market participants with a neg-

ative imbalance pay according to the imbalance market

results and participants with a positive imbalance earn

according to the imbalance market results. Given the techni-

cal problems of an immediate shutdown or start-up of a

facility the imbalance market is much more volatile than the

spot market, which on its turn is much more volatile than

the forward market. Price modelling and option valuation on

imbalance markets is still largely unexplored; that's why we

explore this topic in more detail. 

Negative Imbalance Prices 
In this paragraph we explore a unique phenomenon in elec-

tricity markets: negative prices. Negative prices mean that

the destruction of the commodity has more value than its

creation: electricity is a waste product and is dumped on the

market. How does this situation arise and why can electrici-

ty be seen as a waste product? As discussed before, there

must always be a balance between supply and demand on a

power network. Primarily during the night power supply can

be higher than demand. This nightly imbalance is caused, for

instance, by the installation of combined-cycle facilities and

the so-called must-run character of non-flexible generators.

Combined-cycle installations are basically installed for the

generation of heat (steam) whereby electricity is a co-prod-

uct. Reducing the must-run output is hardly possible from a

technical perspective or it involves high shutdown costs.

Negative prices are acceptable to power suppliers because

the opportunity costs of a shutdown period are sometimes

much higher. Generally, prices will be negative in only a

short period of time and mainly during the night. However,

Figure 1 shows that negative prices can sometimes last for

long periods of time and can attain extreme levels. The

graph contains the imbalance market results in the

Netherlands on March 9th 2003; it shows that the market is

very volatile and prices can jump from -190 ¤/MWh up to

+120 ¤/MWh within two hours. When negative prices last for

a longer period (corresponding to a positive imbalance),

shutting down generation capacity will pay off and imbal-

ance prices will automatically increase. 

Negative prices cause sizeable operational problems, for

example in energy risk management systems. Not all sys-

tems can handle a negative deal in their VaR-calculations,

cash-flow projections or invoice procedures. An even larger

challenge is the appropriate modelling of negative prices for

optimisation and realistic valuation of the most flexible gen-

eration assets. 

Modelling Negative Prices 
Since options on imbalance prices are barely traded, mod-

elling imbalance prices is mainly for risk management, and

for optimal management and valuation of the most flexible

generation units. A flexible unit will be generating power

when the facility is ‘in-the-money’, meaning that the spark

spread (equal to commodity price minus variable cost of
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Figure 1. Imbalance Results

Source: Tennet 

Quarter-hourly imbalance and imbalance prices (average of supply and
extraction price) on 9 March 2003 for the Dutch power market. 

> Price modelling & options valuation on
imbalance markets is still largely unexplored <
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Quarter-hourly bid curves on 9 March 2003 for the Dutch power market.
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trading of options could be stimulated. Before trading in

short-term options really takes off, option valuation tech-

niques are already required: to manage and value flexible

generation assets. In order to determine whether an invest-

ment is worthwhile or not a power generator can be consid-

ered as an option on power production. This method of real

option valuation becomes more and more familiar. However

for a proper valuation of the most flexible generation assets,

it is important that standard option pricing models will be

adjusted to price spikes as well as negative prices.

The study of negative commodity prices has made clear

that negative prices have a special impact on option pricing

models. Standard models as Black-Scholes (1973) and Black

(1976) are not applicable to options with negative underlying

value. New models can be very helpful for financial options

as well as for strategic decisions (real options) like the man-

agement of flexible generation assets ■

fuel) is positive. Many energy risk management systems use

the so-called delta hedging strategy 4 in order to forecast

the optional production capacity in advance. This strategy is

based on the same assumptions as other standard option

formulas. These models assume that electricity and fuel

prices evolve according to a gradual process (‘Brownian

Motion’) with no extreme changes, mean reversion or nega-

tive prices: it assumes prices are lognormally distributed. 

To understand how negative prices can be dealt with, it is

important to understand why negative prices lead to model-

ling problems. The problems all stem from the fact that stan-

dard price models are based on price returns (or in fact

logreturns). A return becomes in fact infinite when prices

approach zero and is not defined at all for negative prices.5

Incorporating negative prices can basically be achieved with

two approaches: an indirect (structural) approach and a

direct approach. The structural approach does not model

prices directly, but models them as the outcome of a price

formation process. This process may include for example

the imbalance (Figure 1) and the imbalance bid curves

(Figure 2), from which imbalance prices result. A structural

approach offers valuable insights in the formation of prices

and is appealing to industry professionals, who ‘recognise’ in

it the functioning of the market. However, for risk manage-

ment systems they easily become too complex, because

they need to contain several stochastic variables (such as

imbalance and imbalance bid curves), which provide chal-

lenging modelling and implementation tasks by themselves. 

A direct price modelling approach is not straightforward

either, but at least reduces the problem to one variable: the

price. We propose to allow for negative prices by setting a

lower bound on the actual price and re-scaling prices with

respect to this lower bound. An important advantage of this

approach is that the lower bound can be based on econom-

ic rationales and market experience. It also allows for the

extreme positive outliers, while limiting the negative outliers

in prices. Moreover, this approach permits the usage of rela-

tively standard time-series models on the re-scaled price

returns. Imbalance prices exhibit sudden jumps and similar

complex interrelations as those in hourly spot prices: within

days and across days in both price levels and price volatility.

For a realistic model it is necessary to include both types of

interrelations. We suggest that a combination of the period-

ic autoregressive model in Guthrie and Videbeck (2002) and

specifications that model each time period separately

(Cuaresma et al., 2002) can achieve this goal. 

Conclusions
Options are helpful products for managing unexpected

price and volume fluctuations. Given the high volatility of

short-term electricity prices it could be expected that elec-

tricity options are very popular. However, currently bilateral

options are traded in the OTC market only on a small scale,

and the exchange trade of options is even lower. The few

options that are traded are mainly on forward contracts,

such as for example an option on the forward 2004. But also

options on day-ahead spot prices (daily exercisable options)

are traded occasionally. A major explanation for the low

trading volume is the difficulty to value those contracts.

When current methods of option valuation are improved, the
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Energy & Commodity Risk Management Centre of

Excellence. msewalt@deloitte.nl 

CYRIEL DE JONG is professor at Erasmus University in
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> Imbalance prices exhibit similar complex
interrelations as those in hourly spot prices <
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1. The authors thank Kasper Walet (Maycroft Consultancy) and
Gerard van Baar (Deloitte & Touche) for helpful comments.

2. Black’s (1976) model is similar to the famous Black-Scholes
(1973) model, but applicable to options on forwards and
futures.

3. If returns are skewed or exhibit clear kurtosis the extended
Black formula with separate terms for skewness and kurtosis
(Jarrow and Rudd, 1982)  yields more reliable results.

4. Without the possession of the option in reality the increase
or decrease of an option value can be optimally simulated by
holding an amount of the underlying asset equal to the option
delta.

5. For example, what is the return if prices increase from -10 to +10?
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A new shifted log-normal distribution for mitigating

’exploding’ implicit prices in mixed multinomial logit models
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Abstract

This paper introduces a new shifted negative log-normal distribution for the price

parameter in Mixed Multinomial logit models. The new distribution, labelled as the

µ-shifted negative log-normal distribution, has desirable properties for welfare analy-

sis and in particular a point-mass which is further away from zero than the negative

log-normal distribution. This contributes to mitigating the ’exploding’ implicit prices

issue commonly found when the price parameter is specified as negative log-normal

and the model is in preference space. The new distribution is tested on 10 stated pref-

erence datasets. Comparisons are made with standard alternative approaches such

as the willingness-to-pay space approach. It is found that the new µ-shifted distri-

bution yields much lower mean marginal WTP estimates compared to the negative

log-normal specification (up to 99% lower) and similar to the values derived from

a multinomial logit while at the same time fitting the data as well as the negative

log-normal specification and much better than the willingness-to-pay space approach.
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1 Introduction

Choice models fitted to stated and revealed preference data for non-market valuation

commonly employ specifications aiming at representing random heterogeneity in taste

across decision makers (Hoyos, 2010). The use of mixed multinomial logit models is

widespread not only in Environment but also Transport and Health for modelling choice

data (and more commonly data from stated preference surveys). This category of models

includes all the variants of the mixed logit family such as the generalized multinomial logit

(Fiebig et al., 2010) and the logit mixed logit model (Scarpa et al., 2020; Train, 2016), all

of which provide ways to derive marginal willingness-to-pay (WTP) distributions rather

than point estimates. Both model fit and WTP estimates can vary greatly depending on

model specification and the adequate modelling strategy is situation specific.

The literature often describes the model specification search as a trade-off between

deriving reasonable WTP estimates and model fit to the data, where reasonable refers to

an estimate for the distribution of WTP that is not extremely skewed and in line with the

values found in other papers or derived from other revealed or stated preference methods

(Sonnier et al., 2007; Train and Weeks, 2005). Perhaps the most emblematic illustration

of this trade-off is the distinction between models estimated in preference space and

models estimated in WTP space. Each specification is simply a re-parametrisation of the

other and the main difference is the range of distributions allowed by each specification. A

WTP space model for which the price is not specified as randomly distributed is identical

to its counterpart in preference space. The WTP space approach allows to directly specify

the WTP distribution for each of the (non-monetary) attributes. In preference space,

the distribution of the utility derived from each attribute is specified by the analyst and

the WTP distributions are derived from the ratio of the distribution of a given non-

monetary attribute and the distribution of the price attribute (which requires the use of
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simulations). Performing such a ratio might give rise to the ”exploding” implicit price

problem depending on the distributional assumptions made by the analyst.

In most cases, assuming no random heterogeneity in preferences across decision mak-

ers for the price attribute yields reasonable WTP values but is behaviourally implausible

and might be rejected against competing hypothesis, of which one of the most common

is to assume that the price attribute is negative log-normal. The negative log-normal

distribution has a point mass near zero, which can potentially introduce very small values

in the denominator of the ratio of simulated distributions from which WTP measures are

derived in preference space. This is an issue which has also been found (although to a

lesser extend) when using a log-uniform distribution for the price attribute as suggested

by Hess et al. (2017). The presence of a few large values in the simulated WTP distri-

bution for a given non-monetary attribute can have an extreme influence on the mean of

the distribution (and causing it to ”explode”, that is to reach implausibly large values).

At the same time, models in preference space have often been found to fit the data better

than models in WTP space, because the distributional assumptions allowed by working

in preference space are simply more likely to better accommodate extreme preferences for

a given attribute (or lower price sensitivity for some decision makers). This leads Train

and Weeks (2005) to suggest that ”research is needed to identify distributions that fit the

data better when applied in WTP space and/or provide more reasonable distributions of

WTP when applied in preference space”.

Several authors have engaged with this proposition in the past and most of their

work has consisted in finding distributions that yield more reasonable WTP estimates

in preference space. As previously mentioned, Hess et al. (2017) proposed to used a

negative log-uniform distribution for the price attribute in preference space. However,

such a distribution might not fit the data as well as the negative log-normal distribution

and still produces a few outliers which can have a strong impact on mean WTP estimates.
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Other authors have suggested to use a normal distribution for the monetary attribute

(Svenningsen and Jacobsen, 2018). However, Daly et al. (2012) have demonstrated that

such an approach can prevent the existence of moments for the WTP distribution of the

non-monetary attributes. A different approach has been suggested by Giergiczny et al.

(2012), who proposed to introduce a cost-income variable in their model in an attempt

to shift the (negative log-normal) distribution of the sensitivity for the price attribute

away from zero. It has not become a standard approach in the literature, which is likely

because of the additional data requirements (the income of each decision maker needs to

be know) as well as because of the unorthodox way the cost-income ratio is introduced in

the model (it is an interaction variable which is introduced by dividing the price attribute

instead of multiplying it).

In this paper, we propose a new approach for deriving more reasonable WTP distri-

butions from models estimated in preference space based around the shifted (negative)

log-normal distribution. This approach is inspired by the work of Giergiczny et al.

(2012) in the sense that it consists in shifting the distribution of the price sensitivity

away from zero but, similarly to Hess et al. (2017) for example, it relies solely on a new

specification for the price attribute and does not require to collect additional data to be

implemented. The shifted log-normal distribution (also known as the three-parameters

log-normal distribution) has been introduced by Sangal and Biswas (1970) and has been

used in hydrology, among other fields. The shifted log-normal distribution is simply

obtained by adding a shift parameter to a classic log-normal distribution (as defined in

the remainder of this paper). In what follows, we demonstrate that the three param-

eters log-normal distribution is unable to provide moments for the WTP distributions

when the shift parameter is found to be positive at model convergence. In addition, a

recent contribution from McFadden and Robles (2019) shows that the three-parameters

log-normal also suffers from identification issues which are further commented on in the
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remainder of this article. We propose two new specifications for tackling down these

issues, namely the κ-shifted and µ-shifted log-normal distributions. The µ-shifted is

of particular interest as it is found to always ensure the existence of moments for the

WTP distributions and provide much more reasonable WTP estimates in comparison to

the log-normal and the log-uniform distribution (and not significantly different from the

multinomial logit model).

We test the new approaches derived from the shifted log-normal distribution on 10

datasets from the non-market valuation and transportation literature. Using a large

number of datasets instead of a single one allows to show how well the proposed distri-

bution performs in a large range of empirical contexts. For each dataset, we estimate

a series of models and compare new and existing common parametrisations (multino-

mial logit, mixed logit with a non-random price attribute, log-normal price, log-uniform

price, WTP-space). We estimate 90 models and derive WTP distributions in total. This

large amount of data allows to use meta-analysis techniques to compare the new-shifted

distributions to other existing approaches. We find in particular that the new µ-shifted

parametrisation consistently leads to goodness-of-fit measures which are nearly identi-

cal or equal to the best fitting model for a corresponding dataset, and outperforms the

corresponding WTP-space model in all cases. At the same time, the proposed approach

yields WTP estimates which are not significantly different from those derived from a

multinomial logit model, and far more reasonable than the values derived from models

featuring a log-normally distributed price parameter (between 9.89% and 99.99% lower).

This paper is hence organised as follows. The next section presents the new shifted

distributions. Section 3 describes the framework for empirical testing used to compare

the new shifted distributions to existing alternatives in the literature. Section 4 intro-

duces the data used in this analysis. Section 5 presents and discusses results. Section 6

concludes.
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2 Modelling work

2.1 The Mixed Multinomial Logit framework

We start by describing the well-known Mixed Multinomial Logit (MMNL) specification

in preference space. Let Uint be the utility that respondent n derives from alternative

i in choice situation t. The utility includes a modelled component Vnit and a random

component εint which follows a type 1 extreme value distribution. We have:

Uint = Vint + εint (1)

Vint = ASCi + β′nxint + ρncostint (2)

where βn is a vector of taste coefficients (excluding the sensitivity for the cost), xint a

vector of attributes for alternative i, ρn corresponds to the sensitivity for the cost at-

tribute for respondent n and costint corresponds to the value for the cost attribute for the

alternative i faced by respondent n in choice situation t. We include alternative specific

constants (ASCs) for all but one of the alternatives. The probability that respondent n

chooses a given alternative i conditional on βn, ρn and the ASCs in choice situation t

corresponds to the well know Multinomial logit (MNL) probability. The elements in βn

and ρn can be allowed to vary randomly across respondents. A common assumption in

non-market valuation is to assume that the elements in βn are normally distributed.

βkn = µk + σkζkn (3)
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where µk corresponds to the mean and σk the standard deviation of the random pa-

rameter. In this example, ζkn is a random disturbance distributed N(0, 1) which is very

common in non-market valuation, but other distributions (Uniform, Triangular, etc) can

be used too. Recent contributions from Fosgerau and Mabit (2013) and Train (2016) (see

also Scarpa et al. (2021)) provide different ways of introducing more flexible distributions

in the mixed logit framework. For example, following Fosgerau and Mabit (2013), it is

possible to specify βn as a second order polynomial of a standard normal random variable

as follows:

βkn = µk + σ1kζkn + σ2kζ
2
kn (4)

In some cases, the distribution of a given attribute needs to be constrained for be-

havioural reasons or for ensuring the existence of moments for the distribution of marginal

WTP estimates. This is for example the case for the price attribute, which is generally

assumed to be log-normal.

ρn = −e(µprice+σpriceζprice,n) (5)

As the actual value of βn and ρn for a given respondent is not observed by the

analyst, the choice probabilities are given by a multi-dimensional integral of the MNL

probabilities. It is worth noting that constraining the standard deviation σ of all the

random parameters to be zero leads to an MNL model.

Assuming that the sensitivity for the cost attribute follows a negative log-normal

distribution has undesirable features when it comes to deriving marginal Willingness-

To-Pay (mWTP) distributions. Indeed, mWTP distributions are derived for each non-
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monetary attribute by calculating the following ratio using a large number of draws

(often several millions):

mWTPkn = −βkn
ρn

(6)

The log-normal distribution has a point-mass near zero, which means that the de-

nominator of Equation 6 is likely to reach extremely small values, leading to very large

mWTP estimates. These large values have been found to have a considerable impact on

mean mWTP estimates. This problem is known as the ’exploding implicit price’ problem

in the literature (see Giergiczny et al. (2012) for example) and the mean mWTP values

derived from such models have been branded as unreasonable or counter-intuitive based

on expert knowledge (Scarpa et al., 2008). A series of alternative parametrisations have

been suggested in the literature to circumvent this issue. However, each proposition has

its drawbacks and a universal solution does not exist. The right modelling approach is

always case specific and depends on the data at hand.

2.2 Alternative parametrisations

A popular alternative to the parametrisation presented above is the WTP space ap-

proach. The WTP space approach was first suggested by Train and Weeks (2005),

although the concept was first put forward in Cameron (1988) in the context of refer-

endum contingent valuation data. A model parametrised in WTP space is obtained by

reformulating Equation 2 so that:

Vint = ASCi + ρn · (β′nxint − costint) (7)
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where the elements of β′n are now directly interpretable as WTP estimates. It is

worth noting that not all the elements of β′n have to be specified in WTP space.

The main difference between the preference space and the WTP space approach is

the assumptions made about the distribution of mWTP. Assuming normally distributed

preferences for the non-monetary attributes, a model specified in preference space implies

that the mWTP distribution for each attribute corresponds to the ratio of a normal

distribution and a log-normal distribution, which leads in most cases to a heavy-tailed

(on the right side) distribution. On the other hand, a model specified in WTP space

implies that mWTP distributions are normally distributed. The fact that the preference

space approach has often been found to fit the data better is likely to be driven by

the fact that the implied distribution of mWTP has more potential for accommodating

extremely high preferences for a given set of non-monetary attributes.

Other solutions often found in the literature consist in constraining σprice to be equal

to zero or using other distributions for ρ in preference space such as the negative log-

uniform distribution, where ζprice,n in Equation 5 is then assumed to be distributed

U(0, 1). In this paper, we compare the aforementioned parametrisations to a set of new

distributions for the price attribute in preference space based on the shifted log-normal

distribution as previously introduced.

2.3 Shifted negative log-normal distributions

2.3.1 The three-parameters log-normal distribution

The original shifted negative log-normal distribution introduced by Sangal and Biswas

(1970) is simply obtained by adding one parameter to the two parameters negative log-
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normal distribution described in Equation 5:

ρn = κ− e(µprice+σpriceζprice,n) (8)

where κ is a shift parameter to be estimated. In the remainder of this paper, we

refer to this specification as the three-parameters log-normal distribution. Introducing

κ is expected to contribute to shift the denominator in Equation 6 away from zero and

hence mitigate the ”exploding ratio” issue. However, this can only be the case if κ is

found to be negative. In the event where a positive κ is found, the model can not be

used for welfare analysis as the distribution of ρ can span on both sides of zero. This is

a problem because this would suggest that no finite mWTP moments exist (this issue

is thoroughly documented in Daly et al. (2012)). Constraining κ to be negative via an

exponentiation is also undesirable. More precisely, if κ is unconstrained and found to be

positive, its constrained counterpart is likely to lead to a shift which is extremely close

to zero, which in turn can lead to issues during model estimation, in addition to having

no or very little impact when it comes to moving the numerator of Equation 6 away from

zero.

Another concern regarding the use of a three-parameters log-normal distribution for

the price attribute which has been recently pointed-out by McFadden and Robles (2019)

is that the parameters µ and κ described in Equation 8 are collinear and were found to

be ”poorly estimated” in a series of Monte-Carlo simulations. The authors state that

”this is unsurprising since both act to determine the location of the [...] distribution, and

have effects that are separately identified only through the behaviour of consumers facing

the most extreme high prices”. In this paper, we propose two new specifications of the

shifted log-normal distribution which seek to mitigate these issues.
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2.3.2 The κ-shifted log-normal distribution

Our first proposition is to constrain µprice in Equation 8 to be equal to zero in order to

only let κ act as a location parameter and improve the chances to find a model where the

value of κ at convergence is negative. It is worth noting that this does not imply that we

assume that the mean of the resulting shifted negative log-normal distribution is zero.

Indeed, the mean of a three parameters log-normal distribution is jointly influenced by

κ, µprice and σprice as discussed by Sangal and Biswas (1970). Constraining µprice to be

zero simply transfers the heterogeneity meant to be captured by the parameter to κ and

σprice. We label this specification the κ-shifted negative log-normal distribution (or more

simply, in the context of this paper, the κ-shifted distribution). it is formally described

as such:

ρn = κ− e(σpriceζprice,n) (9)

It is worth noting that this solution improves the issue related to the location pa-

rameters reported by McFadden and Robles (2019) but still allows κ to be positive, thus

leading to potential issues with the existence of mWTP moments.

2.3.3 The µ-shifted log-normal distribution

The second alternative specification for the three parameters log-normal distribution

which we propose in this paper consists in replacing the shift parameter κ by the ex-

ponential of the mean of the underlying normal distribution, that is −eµprice . Such a

specification has the desirable property of ensuring that the shift does not become pos-

itive or very close to zero. We label the resulting distribution the µ-shifted log-normal
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distribution. Formally, we propose:

ρn = −e(µprice) − e(µprice+σpriceζprice,n) (10)

This specification improves both the issue related to the location parameters as well

as the need to ensure moments for mWTP estimates. It also ensures that the point-mass

is shifted further away from zero with respect to the 2-parameters negative log-normal

distribution. Its usefulness is proven via an extensive amount of empirical tests which

are described in the next section.

3 Framework for empirical testing

We test the usefulness of the new shifted distributions introduced in this paper by com-

paring their performance with other existing model specifications using 10 datasets in-

troduced in the next section. The different model specifications tested are reported in

Table 1 below:

Table 1: Model specifications

Model monetary attribute parameterization Additional details

MNL ρprice = µprice No random heterogeneity

Fixed monetary attribute ρprice = µprice

LN ρprice = −e(µprice+σpriceζprice) ζ ∼ N(0, 1)

LU ρprice = −e(µprice+σpriceζprice) ζ ∼ U(0, 1)

WTPS ρprice = −e(µprice+σpriceζprice) ζ ∼ N(0, 1), see Equation 7

WTPS P2 ρprice = −e(µprice+σpriceζprice) ζ ∼ N(0, 1), βkn = µk + σ1kζkn + σ2kζ
2
kn

3-Param LN ρprice = κ− e(µprice+σpriceζprice) ζ ∼ N(0, 1)

κ-shifted ρprice = κ− e(σpriceζprice) ζ ∼ N(0, 1)

µ-shifted ρprice = −e(µprice) − e(µprice+σpriceζprice) ζ ∼ N(0, 1)

All models are estimated with 2,000 mlhs draws (Hess et al., 2006)

The MNL specification is introduced as a baseline benchmark and also because this is

still used for welfare analysis in some contexts. The fixed monetary attribute specification

Electronic copy available at: https://ssrn.com/abstract=3878952



13

refers to a model where all the parameters are randomly distributed apart from the

monetary attribute, for which no random heterogeneity is assumed. The LN model

refers to a model where the monetary attribute is assumed to be distributed negative

log-normal and will be one of the main comparison points together with the WTPS

model. A negative log-uniform (LU) specification is also introduced and tested. The

WTPS P2 model refers to a WTP-space model where each non-monetary attribute is

specified as a second order polynomial of a standard normal random variable (or log-

normal in a very few cases). The three remaining specifications refer to the three shifted

log-normal distribution discussed in this paper (3-PARAM LN, κ-shifted and µ-shifted).

The specification of the non-monetary attributes are the same across all the models1

(apart from the MNL model and the WTPS P2 model). All models are estimated using

the Apollo package for R (Hess and Palma, 2019).

3.1 Models comparison

A total of 90 models are estimated (9 for each set of data). The models are then compared

as follows:

3.1.1 Model fit

We first compare the impact of distributional assumptions for the price attribute on

model fit by comparing the log-likelihood as well as the BIC for each model. We do not

use likelihood ratio tests because the large majority of models feature the same number

of parameters (for a given dataset). Moreover, the only cases where it would be adequate

to run a likelihood-ratio tests are for comparing the MNL model and the fixed monetary

attribute model to the other models. However, it is well-known that such models result in

1For all the datasets, the large majority of the non-monetary attributes have been specified as normally
distributed apart from a few which have been specified as log-normally distributed when constraining
the sign was necessary.
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a significantly poorer fit in a large majority of cases, and testing for this with likelihood

ratio tests would only state the obvious.

3.1.2 Welfare estimates

Secondly, we compare the difference between the moments of the resulting mWTP for

each model specification and each dataset. In particular, we compare the difference

between the 3-parameters LN specification, the κ-shifted specification and the µ-shifted

specification with the two parameters LN specification and the WTPS model.

3.2 Meta-analysis on welfare estimates

Meta-analysis techniques have been extensively used in non-market valuation for com-

paring studies and identify the factors that drive their results. Meta-analysis are also

essential in the literature on benefit transfers, where the results from different studies are

aggregated via a meta-regression in order, for example, to forecast the economic value

of the ecosystem services provided by natural sites on which a stated preference survey

has not been performed. In the context of this paper, we propose the following process:

i Compute the mean mWTP estimate for each attribute and for each model specifica-

tion in all the model specifications

ii Each resulting mean mWTP corresponds to an observation

iii The dependent variable of the meta-regression is specified to be the natural logarithm

of each mean mWTP, giving rise to a log-linear regression

iv The independent variables of the meta-regression are dummy variables corresponding

to each dataset and dummy variables corresponding to each model (minus a base in

each case)
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Such an approach will allow to isolate the effect of the model specification on mean

mWTP estimates and provide confidence intervals for the difference in terms of welfare

estimates across model specification. The log-linear approach is favoured over a linear

approach because the welfare estimates derived from each datasets might be expressed

in different currencies and feature different orders of magnitude. Using a log-linear

framework also allows to interpret results as the variations in percentage of the mean

welfare estimates driven by the different model specification tested all else being equal.

3.2.1 Differences in distributions

This test consists in plotting the kernel density estimate of the mWTP distributions de-

rived from each model (this excludes the MNL model, from which welfare distributions

can not be derived) and compare the common area across model specification. Ker-

nel density estimation (KDE) is simply a non-parametric technique for estimating the

probability density function of a random variable. We then use the k-density test for

comparing the common area of KDE proposed by Mart́ınez-Camblor et al. (2008). This

test allows to assess how similar or different two distributions are. More precisely, the

k-density test gives a simple measure of the proximity of two kernel density estimates.

This measure, known as the AC statistic, varies between 0 and 1. A value of 0 corre-

sponds to an absolute discordance while a value of 1 corresponds to an absolute match

of the distributions. This test will mainly allow to measure how (dis-)similar mWTP

distributions are across model specifications for a given dataset.

3.3 Out-of-sample fit

The last test consists in measuring whether the in-sample fit and out-of-sample fit is

significantly different across model specifications all else being equal. Again, the data

curation and modelling work is organised as follows:
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i Each data set is randomly split into two parts: an estimation sample (70% of the

respondents) of the dataset and a validation sample (30% of the respondents).

ii For each estimation sample, different models of interest are estimated

iii The estimated parameters for each model and each dataset are used to measure the

fit of the model (log-likelihood) on their respective estimation and validation sample.

iv This process is repeated 10 times for each model and each dataset with different

(randomly chosen) estimation and validation samples. This is performed in order

to increase the sample size for the meta-regressions as well as because performances

could vary across different, randomly selected estimation and validation samples.

The datasets on which these tests are performed are introduced in the next section.

4 Data

4.1 Overview

We use ten SP surveys datasets from five different countries (France, Germany, Poland,

United Kingdom and United States of America). The SP surveys vary in terms of design

(number of attributes, number of choice scenarios, and number of alternatives). Some

SP surveys address market goods (car choice, chicken and fish meat choice, theatre play

choice, coffee choice) while others address non-market goods (forest protection, erosive

run-offs mitigation, water protection). The data from each of these surveys has been

used for published methodological or empirical contributions to the SP literature in 9

cases out of 10 (the remaining case being a report for the German government). For

each paper, we describe the SP in terms of design (attributes, alternative, levels) and

sampling (number of respondents). One reference is given for each dataset. The data is

summarised in Table 2 below.
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Table 2: Overview of data

Survey Ref. Description Number of alternatives & choice tasks Nb. of respondents Attributes Levels

Normandy flood protection (Crastes et al., 2014) Measuring preferences for flood risk mitigation measures in Normandy (France) 3 alternatives including one status quo; 6 choice tasks per respondent 416

Agri - Improving agricultural practices against floods 0, 1
Infra - Improving protections against floods 0, 1
Com - Improving communication against floods 0, 1
Price (in ) 0, 12.5, 25, 32.5

University of Nantes coffee machines (Sandorf et al., 2018) Preferences for upgrading coffee machines at the University of Nantes (France) 3 alternatives including one status quo; 8 choice tasks per respondent 288

Cardpay - is it possible to pay by card? 0, 1
Organic - Organic coffee 0, 1
Fairtrade - Fairtrade coffee 0, 1
Recycle - Can the cup be recycled 0, 1
Price (in ) 0.40, 0.45, 0.50, 0.55

Bialowieza Forest (Bartczak, 2015) Management choices for improving the quality of the Bialowieza forest (Poland) 3 alternatives including one status quo; 12 choice tasks per respondent 1202

Cen - Level of ”naturalness” of the commercial part of the forest 0, 1
Gos - Level of ”naturalness” of the second growth forest 0, 1
Vis1 - Restrictions on number of visitors per day 0, 1
Vis2 - Restrictions on number of visitors per day 0, 1
Fee (in zl) 25, 50, 75, 100

Ecological value of Polish forests (Czajkowski et al., 2014) Management choices for improving the quality of Polish forests 4 alternatives including one status quo; 26 choice tasks per respondent 1001

Nat - Partial and substantial improvement in the protection of the forest 0,1,2
Tra - Partial and substantial improvement in the amount of litter found 0,1,2
Inf - Partial and substantial improvement in tourist infrastructure 0,1,2
Fee (in zl) 10, 25, 50, 100

Endangered fish (Campbell, 2008) Policy preferences for protecting endangered fish species in the Republic of Ireland and Northern Ireland 3 alternatives including one status quo; 16 choice tasks per respondent 754

Ac - Protect Arctic char 0,1
As - Protect Atlantic salmon 0,1
F - Protect Ferox brown trout 0,1
G - Protect Gillaroo brown trout 0,1
S - Protect Sonaghan brown trout 0,1
Income tax (/year) 3, 6, 12, 24, 48

Warsaw Theatres (Czajkowski et al., 2017) Public support for discounted theatre tickets 2 alternatives including one status quo; 12 choice tasks per respondent 1569

Roz - Entertainment theatre is funded 0,1
Sro- Drama theatre is funded 0,1
Dzi - Children’s theatre is funded 0,1
Eks - Experimental theatre is funded 0,1
Contribution (in zl) 10, 20, 50, 100

Car choice (Train and Weeks, 2005) Choice of different vehicles including electric and hybrid vehicles 3 alternatives; up to 15 choice tasks per respondent 500

Engine type - Gas, electric or hybrid 0,1,2
Operating cost (in $ per month) From 2.51 to 72.29
Performance - Low, medium or high 0,1,2
Range (in hundreds of miles for EV) Up to 200
Body type (10 types ranging from mini car to large van) 0,1,2,3,4,5,6,7,8,9
Purchase price (in $) From 7,018 to 97,301

Chicken (Campbell and Doherty, 2013) Value-added services to chicken meat 3 alternatives including one status quo; 12 choice tasks per respondent 816

Test - Food testing, standard or enhanced 0,1
Trace - Traceability, standard or enhanced 0,1
Well - Animal health, standard or enhanced 0,1
Origin - Ireland, Great-Britain, EU 0,1,2
Price (in GBP) 2,2.5,3,3.5,4,4.5,5

Bluerivers (Horbat, 2017) Improving the naturalness of German rivers 3 alternatives including one status quo; 6 choice tasks per respondent 2023

Aue - Surface of protective flood plains 10,000 ha, 25,000 ha, 50,000 ha
Wald - Surface of alluvial forests in the floodplains 10%, 30%, 50%
Ufer - Near natural banks 1000 km, 2000km, 3000 km
Fisch - Improved river continuity for fish 50%, 75%, 100%
Baden - Reduction of the entry of waste waters and fertilisers (bad, medium, good) 0,1,2
Fee (in per year) 15, 25, 50, 100, 170, 250

Nitrolimit (Meyerhoff et al., 2014) Value of water quality improvements in the region Berlin-Brandenburg (Germany) 3 alternatives including one status quo; 12 choice tasks per respondent 754

uhavel - Quality improvement in Lower havel 0,1,2,3
ohavel - Quality improvement in Upper Havel 0,1,2,3
stadts - Quality improvement in city stretch spree 0,1,2
koeps - Quality improvement in spree Kopenick 0,1,2
dahme - Quality improvement in Dahme - Scharmutzelsee 0,1,2,3
cost (in per year) 10,25,20,75,100,150
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4.2 Sensitivity for the monetary attribute

Further information about each dataset can be derived from the analysis of the choices

made by respondents as a function of the level of the monetary attribute. More precisely,

and given the central importance given to the monetary attribute and its specification

in the current paper, we propose to investigate whether the monetary attribute levels

presented to the respondents in each dataset were binding or not. For most normal

goods, alternatives with a higher price should be less appealing than alternatives with

a lower price and hence should be less likely to be chosen. Glenk et al. (2019), citing

Mørkbak et al. (2010) as well as Guy and Willis (1999), report that the highest level of

the monetary vector should be chosen ’following’ a rule of thumb that the alternatives

with the highest level for the monetary attribute should not be selected in more than

5 to 10% of the choice situations where it is present. Although the evidence for such a

rule is lacking, it is clear that the amounts presented to the respondents must be credible

(Johnston et al., 2017) and that datasets for which the chosen alternatives are more

often the alternatives for which the monetary attribute level is the highest suggest the

presence of issues (with the experimental design, with the engagement of respondents,

etc). We follow Glenk et al. (2019) and plot ’bid acceptance curves’ for each dataset,

which show the cumulative number of times (expressed in percentage) an alternative has

been chosen at its cost level or at a lower cost level. Cumulative acceptance rates should

decline as the monetary attribute level increases in all cases. Results are reported in

Figure 1 below2.

2Results for the car choice dataset were not plotted because the number of levels for the cost attribute
was found to be too large. Detailed results for this dataset are available from the author upon request
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Figure 1: Bid acceptance curves

We find that most datasets yield ’well-behaved’ bid acceptance curves. The highest

monetary bid is selected between 6 and 12% of the times for all the datasets apart from

the Fish dataset and the Chicken dataset. The most problematic results are found for

the Fish dataset, where the alternative featuring the highest price bid (six levels in total)

is selected 24.64% of the times. This is more than double the proportion found for the

other datasets and clearly indicates a form of price insensitivity. The Chicken dataset is

also problematic because the three highest price bids out of 13 are selected in nearly 25%

of the cases, which is disproportionately higher than what is found in the other datasets.

In the Chicken data case, the choices are about food, where the price can be considered
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as an indicator of quality (Palma et al., 2016). The Fish dataset is about endangered

species conservation, which yields difficult choices because of the lack of comparison with

existing markets. The econometric treatments to apply in such context are out of the

scope of this paper. Despite the fact that they feature clear issues when it comes to

price sensitivity, the Fish and the Chicken datasets are considered in the remainder of

the paper in order to illustrate how the proposed modelling approach performs under

different circumstances.

5 Results

5.1 Goodness-of-fit and welfare estimates

In this section, we discussed the results obtained for each model and each dataset in

terms of goodness-of-fit and moments of the mWTP distributions for each dataset. We

only report the mWTP for the most valued attribute (according to the MNL model) for

each dataset in an attempt to simplify the presentation of the outputs of our analysis.

Table 3 shows that the models estimated in preference space (excepted the MNL

models and the models for which random heterogeneity in preferences for the price is

not considered) outperform the WTP space models in terms of goodness-of-fit for all the

datasets considered. The largest gap is found when comparing Model E3 (Fish LN ) and

Model E5 (Fish WTPS ). The log-likelihood for Model E3 is found to be -6740.244, while

it is -8042.301 for Model E5, which is a difference of 1302.057 likelihood points. The

BIC for model E3 is found to be 16.04% lower than the BIC for Model E5. The smallest

difference is found between Model G5 (Cars WTPS, for which the log-likelihood is equal

to -6326.96) and Model G9 (Cars κ-shifted, for which the log-likelihood is found to be

-6310.088). The difference is 16.872 likelihood points while the BIC difference is -0.26%.

Overall, the best performing model across datasets in terms of goodness-of-fit is
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found to be the LN model as defined in Table 1, which is found to be the best fitting

dataset in 7 cases out of 10. The 3-parameters shifted LN model is found to be the

best model in 2 cases and the shifted model in one case. However, none of these models

are adequate for deriving meaningful welfare estimates for policy making. Indeed, in 8

cases out of 10, the shift parameter κ for the 3-parameters shifted LN model is found

to be positive, thus preventing WTP moments to be derived. The same result is found

for the κ-shifted model in 3 cases, making it unsuitable for welfare analysis. Although

it is possible to derive moments for the mWTP distributions from the LN models in

all cases, we face issues related to ’exploding’ implicit prices as previously discussed.

The mWTP estimates derived from the LN models (and, to a smaller extend, from the

LU model) are found to be much higher that the estimates derived from all the other

models. As an illustration, the mean mWTP for the attribute as (Fish dataset) derived

from Model E3 is found to be 1447135, while it is 1394.496 for Model E4 (LU), which

is found to be 4426439.75% and 4165.52% higher respectively, than the value derived

from Model E5 (32.69). Given than the maximum price bid in the Fish survey design

is 48, we conclude that these really high mWTP measures are driven by distributional

assumptions rather than genuinely high preferences. This becomes particularly plausible

when also looking at the values derived from Model E1 (41.56) and Model E2 (41.77).

This issue is also found for the Normandy flood protection dataset, the Polish forests II

dataset, the Chicken dataset, the Bluerivers dataset and the Nitrolimit dataset.

We note that the difference in terms of goodness-of-fit between the LN models, the

LU models and the shifted models is marginal in most cases. This is particularly rele-

vant when it comes to the µ-shifted model, for which the difference with the LN model

is systematically below 1% of the BIC. At the same time, the µ-shifted model mitigates

the issues related to the ”exploding ratio” in most cases (and always provides existing

moments). As an illustration, the log-likelihood for Model A8 (Normandy flood protec-
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tion) is found to be -1348.84, while it is -1338.63 for Model A3 and -1341.71 for Model

A4 (which is a difference of 10.22 likelihood points maximum). On the other hand, the

average mWTP for the attribute infra derived from Model A7 is found to be 27.57, while

it is 184.74 for the LN model and 59.97 for the LU model. Similar patterns of results

are found for most datasets, excepted for the Fish dataset, the Chicken dataset and

the Bluerivers datasets, for which the mWTP difference between the µ-shifted and the

WTPS model is found to be above 100% (the differences between the MNL specification

and the µ-shifted specification are found to be smaller in most cases). However, we note

that for the Bluerivers dataset, Model I1 (MNL) is found to yield mWTP estimates which

are very close to Model I6 (121.75 versus 144.81). Moreover, we note that the WTPS

models are largely outperformed by the µ-shifted models in terms of goodness-of-fit for

both the Fish and Chicken datasets, which suggests the presence of cost insensitivity

which is better captured by the µ-shifted model structure with respect to the WTPS

specification.

The WTPS P2 models are found to be an improvement over the WTPSe models

in all cases in terms of goodness-of-fit. Moreover, the mWTP measures are found to

increase with respect to the corresponding WTPS model in 8 cases out of 10 with the

highest increase being equal to 52.41% (Model I6) which corresponds to one of the outliers

datasets for which the sensitivity for the price attribute has been found to be extremely

low.

Overall, we note that the models which deliver the best goodness-of-fit are also those

which yield the highest welfare estimates. It is also clear from Table 3 that the µ-shifted

model is much more parsimonious than the LU and the LN models when it comes to their

impact on welfare estimates. Indeed, welfare estimates derived from the the µ-shifted

model structure are found to be between 9.98% (Cars choice) and 99.99% lower (Fish

dataset) than the LN structure. In other words, the µ-shifted model yields much smaller
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and much more plausible mWTP (according to expert knowledge and competing models)

than the LN and LU specifications while at the same time ensuring a similar goodness-

of-fit (and better than the WTPS specification in all cases). In the next section, we

further refine our analysis by providing a quantitative assessment of the performances of

the µ-shifted model in terms of welfare estimates in comparison to the MNL, the MMNL

without random price heterogeneity, the LN model, the LU model and the WTPS model.

The κ-shifted specification and the 3-parameters specification are not considered in the

remainder of this paper because of their inability to provide moments for the mWTP in

all cases.
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Table 3: Overview of results

Goodness-of-fit WTP moments
Survey

Model LL BIC BIC vs LN (%) BIC vs WTPS (%) Attribute Mean Q50 (Median) Q99 Mean vs LN (%) Mean vs WTPS (%)

1. MNL -2323.01 4692.95 69.35 50.92 26.66 -85.57 85.08
2. Fixed monetary attribute -1557.72 3201.49 15.53 2.96 18.80 18.81 90.71 -89.82 30.55
3. LN -1338.63 2771.12 -10.88 184.74 12.61 2937.03 1182.56
4. LU -1341.71 2777.29 0.22 -10.68 59.97 10.76 575.93 -67.54 316.30
5. WTPS -1501.94 3097.74 11.79 16.4 16.42 75.50 -92.20
6. WTPS P2 -1489.51 3096.36 11.74 -0.04 20.68 13.90 107.98 -88.81 26.14
7. 3-Param shifted -1339.07 2779.83 0.31 -10.60
8. µ-shifted -1348.84 2791.56 0.74 -10.22 27.57 15.39 130.55 -85.08 91.40

A. Normandy flood protection

9. κ-shifted -1363.53 2820.93 1.80 -9.28

infra

26.24 18.00 108.57 -85.80 82.18

1. MNL -1880.31 3814.81 22.33 17.70 0.13 -61.09 3.21
2. Fixed monetary attribute -1589.18 3279.01 5.15 1.17 0.14 0.14 0.43 -59.48 7.49
3. LN -1505.03 3118.45 -3.78 0.34 0.14 3.31 165.25
4. LU -1505.14 3118.66 0.01 -3.78 0.34 0.15 2.30 -1.30 161.79
5. WTPS -1568.26 3244.91 4.06 0.13 0.13 0.44 -62.30
6. WTPS P2 -1524.56 3188.49 2.25 -1.74 0.16 0.13 0.68 -54.08 21.80
7. 3-Param shifted -1499.42 3114.97 -0.11 -3.89
8. µ-shifted -1504.75 3117.9 -0.02 -3.80 0.21 0.15 0.90 -39.82 59.63

B. Coffee machines

9. κ-shifted -1517.18 3142.76 0.78 -3.03

cardpay

0.19 0.17 0.65 -46.05 43.10

1. MNL -14843.4 29753.8 37.86 29.90 44.97 -68.91 24.39
2. Fixed monetary attribute -11662.8 23450.09 8.65 2.38 29.29 29.18 188.02 -79.75 -18.99
3. LN -10724.7 21583.37 -5.77 144.66 16.28 2567.06 300.10
4. LU -10739.5 21613.05 0.14 -5.64 82.53 14.51 964.24 -42.95 128.26
5. WTPS -11385.8 22905.67 6.13 36.08 36.09 190.85 -75.01
6. WTPS P2 -11322 22816.29 5.71 -0.39 48.78 16.78 379.79 -66.28 35.22
7. 3-Param shifted -10721.2 21586.02 0.01 -5.76
8. µ-shifted -10762.6 21659.27 0.35 -5.44 40.47 18.37 263.90 -72.02 11.94

C. Polish forests 1

9. κ-shifted -10756.1 21646.25 0.29 -5.50

cen

50.54 20.88 345.42 -65.06 39.78

1. MNL -29708.3 59497.89 61.94 43.95 142.71 -90.13 53.14
2. Fixed monetary attribute -21120 42433.19 15.49 2.66 87.91 87.84 311.44 -93.92 -5.67
3. LN -18268.8 36740.96 -11.11 1446.46 81.63 22332.47 1452.07
4. LU -18350.8 36904.88 0.45 -10.71 294.32 39.82 2736.30 -79.65 215.81
5. WTPS -20564.8 41332.85 12.50 93.20 93.14 278.44 -93.56
6. WTPS P2 -20397.8 41060 11.76 -0.66 86.34 112.83 205.15 -94.03 -7.35
7. 3-Param shifted -18284.9 36783.32 0.12 -11.01 143.91 94.42 581.01 -90.05 54.42
8. µ-shifted -18260.6 36724.53 -0.04 -11.15 146.26 100.42 563.87 -89.89 56.94

D. Polish forests II

9. κ-shifted -18250.5 36704.39 -0.10 -11.20

tra2

172.97 149.33 550.47 -88.04 85.60

1. MNL -12516.4 25107.92 84.20 54.65 41.56 -99.997 27.12
2. Fixed monetary attribute -8213.46 16567.89 21.55 2.05 41.77 41.53 438.72 -99.997 27.76
3. LN -6740.24 13630.86 -16.04 1.45E+06 1.85E+01 2.26E+06 4.43E+06
4. LU -6754.13 13658.63 0.20 -15.87 1394.50 4.88 27908.93 -99.904 4165.53
5. WTPS -8042.3 16234.97 19.10 32.69 32.65 138.58 -99.998
6. WTPS P2 -7715.06 15627.48 14.65 -3.74 32.90 10.62 264.39 -99.998 0.64
7. 3-Param shifted -6728.52 13616.8 -0.10 -16.13
8. µ-shifted -6749.24 13648.84 0.13 -15.93 106.44 24.15 688.05 -99.993 225.57

E. Fish

9. κ-shifted -6741.14 13632.64 0.01 -16.03

as
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Goodness-of-fit WTP moments

Survey
Model LL BIC BIC vs LN (%) BIC vs WTPS (%) Attribute Mean Q50 (Median) Q99 Mean vs LN (%) Mean vs WTPS (%)

1. MNL -11860.4 23779.83 41.13 37.67 36.48 -40.55 7.44
2. Fixed monetary attribute -8725.55 17559.46 4.21 1.66 34.27 34.23 115.44 -44.15 0.93
3. LN -8365.79 16849.79 -2.45 61.36 23.58 612.05 80.71
4. LU -8378.8 16875.81 0.15 -2.30 49.04 25.80 299.43 -20.09 44.41
5. WTPS -8577.6 17273.41 2.51 33.96 33.92 110.82 -44.66
6. WTPS P2 -8512.87 17183.35 1.98 -0.52 34.45 21.00 170.24 -43.86 1.45
7. 3-Param shifted -8370.33 16868.72 0.11 -2.34
8. µ-shifted -8418.69 16955.59 0.63 -1.84 39.33 26.45 177.00 -35.91 15.82

F. Warsaw theaters

9. κ-shifted -8462.7 17043.61 1.15 -1.33

roz

38.51 29.30 155.35 -37.24 13.41

1. MNL -6930.28 14021.01 9.01 8.06 7.74 -40.11 -12.76
2. Fixed monetary attribute -6427.59 13167.18 2.37 8.06 8.03 45.12 -37.66 -9.19
3. LN -6270.89 12862.69 -0.86 12.93 8.09 109.10 45.67
4. LU -6277.87 12876.65 0.11 -0.76 13.67 8.38 104.13 5.76 54.06
5. WTPS -6326.96 12974.83 0.87 8.87 8.84 44.94 -31.35
6. WTPS P2 -6295.4 13045.42 1.42 0.54 9.44 4.96 65.52 -26.96 6.40
7. 3-Param shifted -6271.43 12872.68 0.08 -0.79
8. µ-shifted -6284.83 12890.56 0.22 -0.65 11.65 8.79 68.03 -9.89 31.26

G. Car choice

9. κ-shifted -6310.09 12941.08 0.61 -0.26

engine hybrid

10.85 8.77 60.62 -16.11 22.21

1. MNL -8899.49 17872.49 17.89 10.97 2.75 -89.97 -1.77
2. Fixed monetary attribute -7988.05 19783.25 30.49 22.84 2.98 2.98 16.29 -89.14 6.31
3. LN -7506.66 15160.35 -5.87 27.44 3.22 517.66 879.14
4. LU -7524.14 15195.3 0.23 -5.65 204.43 5.34 3834.87 645.12 7195.81
5. WTPS -7979.06 16105.14 6.23 2.80 2.80 14.99 -89.79
6. WTPS P2 -7846.15 15885.27 4.78 -1.37 3.86 1.07 32.74 -85.92 37.87
7. 3-Param shifted -7503.98 15164.17 0.03 -5.84
8. µ-shifted -7512 15171.02 0.07 -5.80 6.49 3.25 47.72 -76.34 131.68

H. Chicken

9. κ-shifted -7533.73 15214.49 0.36 -5.53

irel

6.32 4.23 37.47 -76.95 125.68

1. MNL -12243.8 24600.46 29.27 24.85 121.75 -91.91 88.92
2. Fixed monetary attribute -9783.48 19783.25 3.96 0.41 69.00 68.93 584.26 -95.42 7.07
3. LN -9402.13 19029.96 -3.42 1505.24 44.51 30049.69 2235.59
4. LU -9428.43 19082.55 0.28 -3.15 612.87 52.91 9193.19 -59.28 850.96
5. WTPS -9738.85 19703.39 3.54 64.45 64.39 532.35 -95.72
6. WTPS P2 -9403.04 19041.19 0.06 -3.36 98.22 6.83 1041.61 -93.47 52.41
7. 3-Param shifted -9712.65 19745.03 3.47 3.70
8. µ-shifted -9421.08 19067.85 0.20 -3.23 144.81 52.54 1134.52 -90.38 124.70

I. Bluerivers

9. κ-shifted -9404.4 19034.49 0.02 -3.39

baden2

1. MNL -9055.68 18247.99 62.43 57.26 98.65 -96.66 77.35
2. Fixed monetary attribute -5724.04 11712.24 4.25 0.93 55.67 55.67 112.77 -98.11 0.07
3. LN -5480.64 11234.55 -3.18 2.95E+03 6.13E+01 4.10E+04 5.21E+03
4. LU -5503.78 11280.83 0.41 -2.78 2070.59 8.29E+01 2.53E+04 -29.85 3.62E+03
5. WTPS -5665.35 11603.97 3.29 55.63 55.63 97.80 -98.12
6. WTPS P2 -5545.82 11492.43 2.30 -0.96 50.17 52.27 60.25 -98.30 -9.80
7. 3-Param shifted -5485.36 11253.1 0.17 -3.02 100.04 52.74 428.34 -96.61 79.84
8. µ-shifted -5482.32 11237.91 0.03 -3.15 90.97 62.37 345.95 -96.92 63.53

J. Nitrolimit

9. κ-shifted -5554.4 11382.06 1.31 -1.91

uhavel3
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5.2 Meta-analysis of welfare estimates

The meta-regression seeks to measure the effect of model specifications on welfare esti-

mates all else being equal. For each dataset, 7 models are considered:

i MNL

ii MMNL without random heterogeneity in price sensitivity (simply labelled as ”fixed

price”)

iii LN

iv LU

v WTPS

vi WTPS P2

vii µ-shifted

The dependent variable corresponds to the natural logarithm of the average mWTP

for each attribute, each model and each dataset. For the Coffee machines dataset, the

welfare measures have been rescaled and expressed in euro-cents in order to prevent

the log-transformation from leading to a sign change. In the rare cases for which the

average mWTP for a given attribute is found to be negative, we have calculated the

negative of the natural logarithm of the absolute value of the average mWTP. We obtain

a total of 483 observations (69 attributes times 7 models). The independent variables

correspond to a set of dummy variables related to the dataset (and for which the base is

the first dataset, i.e. the Normandy flood protection dataset) as well as a set of dummy

variables which capture the effect of each model. Robust standard errors were calculated

at the attribute cluster level and a random effect (normally distributed using 1,000 mlhs

draws) is introduced to control for potential correlations for the same attribute. A second
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model is estimated without the two outlier datasets (the Fish dataset and the Chicken

meat dataset) in an attempt to control for the effect of price insensitivity on welfare

estimates as defined in Section 4.2. For both meta-regressions, a few observations have

been removed. This only concerns some attributes for which the sign was inconsistent

across models and the significance was poor overall. The first meta-regression features

470 observations while the second meta-regression features 407 observations. Model

results are reported in Table 4 below.

Table 4: Meta-analysis of welfare estimates

Sample All observations No outliers

n 470 407

Variables Param. Rob. T Param. Rob. T

MNL -0.266 -2.62 *** -0.179 -1.61 .

Fixed price -0.384 -9.86 *** -0.377 -9.43 ***

LN 2.187 7.29 *** 1.609 8.91 ***

LU 1.389 8.80 *** 1.120 7.08 ***

WTPS -0.455 -7.31 *** -0.353 -7.05 ***

WTPS P2 -0.389 -5.55 *** -0.307 -4.62 ***

Parametrisation variables

µ-shifted base outcome base outcome

Coffee base outcome base outcome

Nitrolimit 1.944 7.27 *** 1.949 7.32 ***

Polish forests 1 2.239 9.80 *** 2.241 9.80 ***

Polish forests 2 0.082 0.10 . 0.080 0.10 .

Warsaw theaters 0.599 1.91 *** 0.601 1.92 ***

Cars -3.533 -5.65 *** -3.525 -5.62 ***

Chicken -0.903 -3.73 ***

Fish 2.994 12.34 ***

Normandy floods 0.900 3.48 *** 0.901 3.48 ***

Data variables

Bluerivers 2.505 11.20 *** 2.507 11.19 ***

Constant 2.105 11.05 *** 2.184 11.50 ***
Misc

Random effect -1.126 -7.17 *** 1.265 7.99 ***

* Significant at the 10% level

** Significant at the 5% level

*** Significant at the 1% level

Electronic copy available at: https://ssrn.com/abstract=3878952



28

The meta-regression with all observations, for which the base outcome related to

model parametrisation is the µ-shifted model, shows that the LN and LU models yield

mean mWTP estimates which are significantly higher than those derived from the µ-

shifted model, while the rest of the models (MNL, MMNL without random heterogeneity

in the price attribute, WTPS model and WTPS P2 model) all yield mean welfare esti-

mates which are lower than the µ-shifted model all else being equal. However, when the

outlier datasets are excluded from the analysis (no outliers), the difference between the

MNL model and the µ-shifted model becomes non-significant (even at the 10% level).

This is an important result because this shows that, in the context of this paper and

the data considered in this meta-regression, the µ-shifted model produces mean welfare

estimates which are overall not significantly different than those derived from an MNL

while at the same time fitting the data much better, in contrary to the LN and LU

approaches which provide significantly higher welfare estimates. A better way to further

comment on the differences across models in terms of welfare estimates is to look at the

marginal effects, which are reported in Table 5 below.

Table 5 reports the marginal effects of the different model specifications together with

confidence intervals (at the 1% level) for three different bases: µ-shifted model, WTPS

model and LN model. Looking at the results featuring all observations, we find that the

µ-shifted model successfully prevents the ’exploding’ ratio problem because it provides

welfare estimates which are 791% lower than those derived from the LN model and 301%

lower than those derived from the LU model. The WTPS model is found to provide

results which are not significantly different from the MNL model, the fixed price model

and the WTPS P2 model. This is not surprising in the sense that the distributional

assumptions are fairly similar across these models. The µ-shifted model provides results

which are between 32% and 83% higher than the WTPS model although, as we will see

next, this gap is largely reduced when outliers are excluded from the analysis. Finally,
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Table 5: Meta-analysis of welfare estimates - Marginal effects

All observations

µ-shifted WTPS LN

Low. Mean Upp. Low. Mean Upp. Low. Mean Upp.

MNL -43% -23% -3% -9% 21% 50% -99% -91% -84%

Fixed price -39% -32% -25% -6% 7% 21% -99% -92% -86%

LN 102% 791% 1480% 47% 1304% 2561%

LU 138% 301% 464% 222% 532% 842% -83% -55% -27%

WTP -47% -37% -26% -99% -93% -87%

WTP P2 -44% -32% -20% -7% 7% 21% -99% -92% -86%

µ-shifted 32% 58% 83% -97% -89% -80%

Without outliers

µ-shifted WTPS LN

Low. Mean Upp. Low. Mean Upp. Low. Mean Upp.

MNL -40% -16% 8% -14% 19% 52% -93% -83% -73%

Fixed price -38% -31% -24% -11% -2% 6% -94% -86% -79%

LN 167% 400% 632% 237% 611% 985%

LU 82% 207% 332% 137% 337% 536% -50% -39% -27%

WTP -39% -30% -21% -93% -86% -79%

WTP P2 -39% -26% -14% -10% 5% 20% -94% -85% -77%

µ-shifted 24% 42% 61% -89% -80% -71%
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taking the LN model as a base, we find that the µ-shifted model yield welfare estimates

which are 89% lower while it is 91% lower for the MNL, 92% lower for the WTPS P2

model and 93% for the WTPS model. On the other hand, the LU model provides results

which are only 55% lower than the LN model.

Excluding the Chicken and Fish datasets from the analysis further bridges the gap

between the µ-shifted model and the other models (excluding the LN and LU models).

Indeed, the difference between all the models (apart from the LU model) and the LN

model in terms of welfare estimates is still very high and ranges between -80% (µ-shifted

model) and -85% (WTPS model). The LU model provides welfare estimates which are

only 39% lower than those derived from the LN model, even when ”badly behaved”

observations are removed from the analysis. As previously mentioned, the welfare esti-

mates derived from the µ-shifted model are not longer significantly different than those

derived from the MNL model. Removing outliers also reduces the difference between the

µ-shifted model and the WTPS model from -37% to -30% (in other words, the welfare

estimates derived from the WTP-space approach are now only 30% lower than those

derived from the µ-shifted model once outliers have been removed). Another important

result is that increasing the flexibility of the WTPS model by using mixture distributions

shifts the mWTP values towards the µ-shifted model values. Indeed, the values derived

from the WTPS P2 model are 7% higher than those derived from the WTPS model and

only 26% lower than those derived from the µ-shifted model.

Altogether, the results of the meta-regressions indicate that the µ-shifted model is

providing welfare estimates which are only slightly higher than those derived from the

WTPS model and not significantly different than those derived from the MNL model

while providing a much better fit. The LN model is found to perform only slightly better

than the µ-shifted model in terms of goodness-of-fit while at the same time providing

systematically untenable welfare estimates, even when the datasets with extreme price
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preferences are removed from the analysis. Adding some flexibility to the WTPS model

by the means of mixture distributions leads to further bridge the gap between the WTPS

model and the µ-shifted model although the µ-shifted model still fits the data better and

is more parsimonious in parameters.

5.3 Comparison of distributions

Another way to compare the welfare estimates derived from the new µ-shifted specifica-

tion to the other specifications analysed in this paper is to consider the whole distribution

of the mWTP for each attribute instead of the mean. Such a test does not seek to find

whether a given model specification yields higher (or lower) welfare estimates, but to in-

form whether the mWTP distributions derived from the µ-shifted specification are closer

to the distributions derived from the WTP-space specification or the LN specification,

for example. In this paper, this is achieved by using the test for measuring the common

area of kernel density estimates described in Section 3.2.1.

The specifications considered are the following: fixed price, LN, LU, WTPS, WTPS

P2 and µ-shifted. There are 69 non-monetary attributes across the 10 datasets consid-

ered. For each one of these attributes, 7 distributions are generated using 1,000 draws

each time (higher values have been tested and didn’t lead to inconsistencies for this test).

For each distribution, we compute the common area of the kernel density estimates of

two selected specifications at a time. For example, for the mWTP distributions of the

attribute infra (Normandy flood protection dataset) illustrated in Figure 2, we compute

the common area between:

i Fixed price and LN (0.29)

ii Fixed price and LU (0.63)

iii Fixed price and WTPS (0.92)
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iv Fixed price and WTPS P2 (0.89)

v Fixed price and µ-shifted (0.86)

vi LN and LU (0.56)

vii LN and WTPS (0.29)

viii LN and WTPS P2 (0.32)

ix LN and µ-shifted (0.33)

x LU and WTPS (0.61)

xi LU and WTPS P2 (0.62)

xii LU and µ-shifted (0.66)

xiii WTPS and WTPS P2 (0.90)

xiv WTPS and µ-shifted (0.83)

xv WTPS P2 and µ-shifted (0.86)

[Figure 2 next page for better clarity]
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Figure 2: mWTP distributions for the Normandy flood protection dataset
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The values previously listed as well as Figure 2 indicate for example that the distribution

of the mWTP for the attribute infra derived from the LN model shares only 29% of its

surface with the distribution derived from the WTP space model, while it shares 33% of

its surface with the distribution derived from the µ-shifted model. The same measures

are computed for the mWTP of the remaining 68 attributes. This leads to a total of 1035

common area measures, which is a sample large enough to allow to perform statistical

tests. The mean (and median) common area for each pair of specification across all

attributes is reported in Table 6. It is found that the two specifications which yield the

most similar mWTP distributions are the fixed price specification and the WTP space

specification (mean = 0.84, median = 0.92). This is unsurprising because the mWTP

distributions are the same in both cases (in the context of this paper they are generally

normally distributed. The parameters of the distributions might be different of course).

The specifications which yield the distributions which have the least surface in common

are the LN specification and the WTP space specification (mean = 0.40, median = 0.32).

Table 6: Common Area of kernel density estimates of mWTP distributions

Median

Fixed price LN LU WTPS WTPS P2 µ-shifted

Mean

Fixed price 1 0.322 0.485 0.918 0.828 0.791

LN 0.412 1 0.638 0.320 0.328 0.328

LU 0.435 0.675 1 0.444 0.470 0.616

WTPS 0.842 0.402 0.421 1 0.825 0.752

WTPS P2 0.743 0.414 0.426 0.783 1 0.750

µ-shifted 0.694 0.471 0.543 0.670 0.645 1

In the context of this paper, it is of particular interest to find whether the distributions

derived from the µ-shifted specification are closer to those derived from the WTP space

specification or the LN specification. The average common area between the mWTP

distributions derived from the LN specification and the WTP space specification is found

to be 0.40 and significantly lower than the average common area between the mWTP

Electronic copy available at: https://ssrn.com/abstract=3878952



35

distributions derived from the µ-shifted specification and the WTP space specification

(0.66) according to a T-test (t = -6.444, degrees of freedom = 136). This confirms that

the proposed µ-shifted specification does not only yield mWTP moments which are closer

to the WTP space parametrisation with respect to the LN specification, but that the

overall mWTP distributions are found to be more similar.

The distributions derived from the WTP-space P2 specification have less area in

common with the distributions from the µ-shifted approach than the distributions derived

from the WTP-space approach (although this effect is very small and not significant

according to a T-test). This is surprising because the WTP-space P2 specification is

found to yield welfare estimates which reduce the gap with the µ-shifted specification

with respect to the WTP-space approach. This might be due to the fact that although

both the µ-shifted and WTP-space P2 specifications generally yield mWTP distributions

with longer tails than the WTP-space approach, the distributions derived from from the

WTP-space P2 approach exhibit a point-mass which is generally slightly more to the

left than the µ-shifted approach, as illustrated by Figure 2. Introducing polynomials

of higher order (see Fosgerau and Mabit (2013)) for the WTP-space specification might

yield different results.

The results presented above should only be considered as valid in the context of this

paper, where the overwhelming majority of the non-monetary attributes are specified as

normally distributed as it is often the case in non-market valuation. Running such an

analysis using different data sources (for example Value of Travel Time studies) might

lead to different results because travel time is an attribute which is typically specified as

negative log-normal.
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5.4 Out-of-sample fit

The final test performed is an out-of sample fit test. This is a common method to test for

over-fitting of a model (or, in the current case, compare whether different models are more

or less prone to over-fitting). Each dataset is split into two parts: an estimation sample

and a validation sample. 70% of the respondents are allocated to the estimation sample

and the remaining 30% are allocated to the validation sample. This is repeated 10 times

with different, randomly selected respondents each time. Different models of interest

are produced using the estimation samples. For each estimation sample, the resulting

parameters are used to compute the log-likelihood of the model on the estimation sample

as well as on the corresponding validation sample. Repeating this process with different

estimation and validation samples enhances the robustness of the test.

This protocol is slightly different from the protocol proposed by Train and Weeks

(2005), where the sampled respondents are divided into two equal-sized sub-samples

and the log-likelihood of the estimated models are evaluated on the other sub-sample.

Moreover, our protocol is very different from the approach of Sonnier et al. (2007) who

included all but one choice situation for each respondent in their estimation sample

and computed the log-likelihood of the competing models on the single choice situation

remaining for each respondent. For each estimation sample, we estimate three models:

i LN model

ii µ-shifted model

iii WTP space model

The analysis is restricted to these three specifications because the proposed protocol

is computationally intensive and requires the estimation of 300 additional models (10

datasets times 10 training sets times 3 specifications). Each model is estimated using
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2,000 mlhs draws. As previously stated, it is also clear at this stage of the analysis that,

among the three distributions for the price parameter derived from the three-parameter

log-normal distribution presented in this paper, the µ-shifted distribution is the only one

that always ensures the existence of moments for the underlying mWTP distributions and

doesn’t suffer from identification issues and thus should be the one to receive increased

attention. The LU distribution is also not considered for this test because, as seen

in Table 3, it consistently results in an inferior goodness-of-fit with respect to the LN

distribution while at the same time performing poorly when it comes to mitigating the

”exploding ratio” problem. The WTPS P2 model is not considered because it is quite

similar to the WTPS model and features more parameters than the other competing

models. Finally, it is of little interest to compare the out-of-sample performances of the

MNL model and the MMNL model with a fixed monetary attribute in the context of

this paper. Results are reported in Table 7 below.

The LN model is found to exhibit the best average out-of-sample fit in 9 cases out of

10. The µ-shifted model is found to slightly outperform the LN model for the Nitrolimit

dataset (-1644.70 versus -1649.05). The difference between the LN model and the µ-

shifted model is found to be marginal in all cases and rarely exceeds 10 likelihood points.

On the other hand, the average out-of-sample log-likelihood is between 1.41% (car choice

dataset) and 18.98% (Fish dataset) lower for the WTP space specification compared to

the LN specification (the difference is about the same for the µ-shifted specification).

The average out-of-sample fit for the WTP-space specification across datasets is 7.41%

lower than what is found for the µ-shifted specification (7.64% for the LN specification).

However, the out-of-sample fit is not found to be disproportionally lower than the in-

sample-fit for all the datasets and specifications considered. This means that the out-of-

sample performances of the WTP space approach are not found to be lower than those

of the µ-shifted and LN specifications.
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Table 7: Out-of-sample fit

Survey Model In Out

Normandy flood protection
Log-normal -934.699755 -406.63
µ-shifted -941.660776 -410.16
WTPS -1084.43652 -480.85

University of Nantes coffee machines
Log-normal -1048.42563 -456.53
µ-shifted -1052.22735 -457.84
WTPS -1091.40451 -477.41

Polish forests 1
Log-normal -12863.3804 -5443.86
µ-shifted -12828.545 -5454.71
WTPS -14334.9336 -6219.88

Polish forests 2
Log-normal -7505.71019 -3221.98
µ-shifted -7532.51409 -3231.43
WTPS -7960.65166 -3420.21

Fish
Log-normal -4673.77172 -2072.58
µ-shifted -4685.04456 -2079.24
WTPS -5835.43869 -2558.33

Warsaw theaters
Log-normal -5844.74319 -2531.42
µ-shifted -5879.24441 -2542.35
WTPS -5987.2186 -2591.02

Car choice
Log-normal -4382.79432 -1895.41
µ-shifted -4395.1896 -1896.78
WTPS -4439.9235 -1922.60

Chicken
Log-normal -5256.48631 -2257.45
µ-shifted -5261.34282 -2261.64
WTPS -5567.29331 -2388.85

Bluerivers
Log-normal -6593.36604 -2816.68
µ-shifted -6606.03361 -2821.04
WTPS -6811.40965 -2929.93

Nitrolimit
Log-normal -3851.67037 -1649.05
µ-shifted -3845.04323 -1644.70
WTPS -4058.28796 -1760.52
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Altogether, these results suggest that there are only very small differences between

the three competing specifications in terms of over-fitting. Again, the µ-shifted is not

found to feature any specific disadvantage compared to the LN specification while at the

same time providing much more reasonable welfare estimates.

6 Conclusion

Mixed multinomial logit models are the most widely used specification for fitting stated

choice experiments data in non-market valuation, transport and health, among other

fields (Mahieu et al., 2017). The past 20 years have seen a profusion of competing

specifications, some of which aim at fitting the data better while other seek to provide

more reasonable distributions of mWTP. However, in some cases, improving the fit of

a given model leads to implausibly large welfare estimates (and mitigating this issues

leads, in turn, to a decrease in the fit of the model). This trade-off, largely illustrated by

the opposition between preference space and WTP space models, has led practitioners to

suggest finding new modelling strategies for fitting the data better in WTP space and/or

mitigating the so-called exploding ratio issue in preference space (Train and Weeks,

2005).

In this paper, we have investigated the usefulness of using shifted log-normal dis-

tributions (Sangal and Biswas, 1970) for the price attribute in mixed logit models. In

addition to testing the traditional shifted negative log-normal distribution, labelled as

the three-parameters log-normal and recently studied by McFadden and Robles (2019),

we have introduced two new parametrisations: the κ-shifted distribution and the µ-

shifted distribution. We have compared these new approaches to the more common

modelling strategies found in the literature. These comparisons have been made fol-

lowing a framework for empirical testing which included a quantitative assessment of

the differences across specifications in terms of goodness-of-fit performed by the means
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of a meta-analysis where 10 datasets and 483 distributions of welfare estimates were

considered.

While the three-parameters log-normal and the κ-shifted distributions have been

found to be problematic due to the fact that they cannot necessarily ensure the exis-

tence of moments for the implicit prices/mWTP distributions, the µ-shifted distribution

for the price attribute has been found to systematically deliver welfare estimates which

are not significantly different from those derived from the multinomial logit model (pro-

viding that the data is well-behaved). Moreover, the µ-shifted approach delivers welfare

estimates which are 80% lower than those derived from a model with a (negative) log-

normally distributed price parameter, while it is 86 % lower for the WTP space approach.

At the same time, the µ-shifted approach fits the data almost as well as the negative log-

normal approach (the models are virtually equivalent in most cases, and the µ-shifted

approach is found to be a marginal improvement over the log-normal approach in 2

cases out of 10). In comparison, the WTP space approach is outperformed in terms of

goodness-of-fit (sometimes largely) in 10 cases out of 10. Improving the flexibility of

the WTP space model by introducing mixtures of normal (second order polynomials)

marginally reduces the gap between the µ-shifted and the WTP space approach in terms

of goodness-of-fit and welfare measures but is costly in terms of parameters.

Despite the large amount of evidence provided in this paper, it is possible that our

results are context specific. More precisely, most of the non-monetary attributes featured

in the 10 datasets considered have been specified as normally distributed. Different

results could have been found if more papers from the transport literature would have

been considered since typical attributes such as travel time are often specified as negative

log-normal. The ratio of a log-normal distribution and a µ-shifted distribution might

yield different results than the ratio of a normal distribution and a µ-shifted distribution.

Future research on this topic will hence investigate the usefulness of the proposed method

Electronic copy available at: https://ssrn.com/abstract=3878952



41

in different empirical contexts. Another area for future research is to focus on less

models but compare the µ-shifted approach to models featuring flexible distributions with

polynomials of higher order in order to investigate whether highly flexible distributions

are further converging towards the results derived from the µ-shifted model.
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7 Appendix

7.1 Detailed model results

Table 8: Normandy flood protection model results

1.MNL 2. Fixed mon. attr. 3. LN 4. LU 5. WTPS 6. WTPS P2 7. 3-param. Shifted 8. µ-shifted 9. κ-shifted

LL -2323.007 -1557.723 -1338.625 -1341.708 -1501.937 -1489.513 -1339.067 -1348.843 -1363.532
AIC 4658.01 3137.45 2701.25 2707.42 3027.87 3009.03 2704.13 2721.69 2751.06
BIC 4692.95 3201.49 2771.12 2777.29 3097.74 3096.36 2779.83 2791.56 2820.93
R2 0.1507 0.4279 0.5075 0.5063 0.4479 0.4513 0.5069 0.5037 0.4984

Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T.

µ

ASC1 -0.491 -3.69 -0.256 -0.88 2.401 7.27 2.394 7.34 0.025 7.67 0.022 23.38 2.410 7.13 2.090 7.40 1.797 6.72
ASC2 -0.659 -4.96 -0.695 -2.49 2.000 6.11 1.995 6.12 0.001 0.36 0.004 2.75 2.004 5.97 1.693 5.89 1.412 5.04
Agri 1.021 13.88 2.383 9.73 2.295 9.64 2.247 10.76 0.144 63.15 0.149 117.00 2.290 9.67 2.239 10.60 2.126 10.85
Infra 1.091 16.26 2.580 11.09 2.434 10.66 2.385 12.28 0.164 47.20 0.139 96.50 2.434 10.92 2.350 12.05 2.239 12.39
Com 0.536 6.69 1.361 6.35 1.347 7.10 1.336 7.64 0.071 28.37 0.064 198.02 1.379 7.13 1.323 7.57 1.256 7.56
Price -4.093 -11.58 -12.668 -9.58 2.544 19.18 5.647 25.03 4.722 12.10 4.971 10.59 2.566 12.40 1.400 10.15 . .

σ1

ASC1 . . 1.196 5.14 -0.172 -0.75 -0.138 -0.78 -0.084 -44.86 -0.099 -514.54 -0.320 -1.15 0.098 0.59 0.072 0.59
ASC2 . . -0.600 -1.25 -0.262 -0.37 -0.251 -0.78 -0.047 -31.19 -0.062 -314.38 0.175 0.61 0.262 0.77 0.129 0.39
Agri . . 3.920 11.45 -1.670 -4.97 1.819 6.09 0.267 61.83 0.268 265.07 1.775 4.92 1.769 5.74 1.648 5.40
Infra . . 3.598 11.63 1.395 5.49 1.349 6.82 0.255 59.98 0.247 320.27 1.412 5.77 1.417 6.54 1.372 6.74
Com . . -2.600 -9.02 -1.316 -5.14 -0.977 -3.12 0.161 55.18 0.162 213.84 1.149 3.48 -0.988 -2.57 -0.932 -2.55
Price . . . . 2.161 11.75 -6.144 -12.94 2.189 6.64 2.360 7.93 2.140 8.31 3.335 13.81 5.288 12.43

σ2
Agri . . . . . . . . . . 0.039 86.37 . . . . . .
Infra . . . . . . . . . . 0.068 206.66 . . . . . .
Com . . . . . . . . . . 0.017 98.26 . . . . . .

κ . . . . . . . . . . . . 0.210 0.17 . . -4.958 -5.00
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Table 9: University of Nantes coffee machines model results

1.MNL 2. Fixed mon. attr. 3. LN 4. LU 5. WTPS 6. WTPS P2 7. 3-param. Shifted 8. µ-shifted 9. κ-shifted

LL -1880.305 -1589.18 -1505.03 -1505.135 -1566.306 -1524.561 -1499.415 -1504.753 -1517.183
AIC 3774.61 3204.36 3118.45 3118.66 3241.01 3085.12 3028.83 3037.51 3062.37
BIC 3814.81 3279.01 3038.06 3038.27 3160.61 3188.49 3114.97 3117.9 3142.76
R2 0.2544 0.367 0.3999 0.3998 0.3757 0.3906 0.4017 0.4 0.3951

Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T.

µ

ASC1 -0.007 -0.05 -0.264 -1.24 0.250 1.11 0.176 0.81 -0.010 -1.29 0.00 -0.96 0.257 1.10 0.222 1.01 0.148 0.68
ASC2 -0.137 -1.12 -0.281 -1.59 0.252 1.36 0.215 1.17 -0.008 -1.12 0.00 -6.21 0.261 1.38 0.232 1.25 0.142 0.78
cardpay 1.372 13.87 3.076 10.13 3.536 8.1 3.754 9.94 0.130 17.70 0.13 50.82 3.636 9.73 3.453 10.11 3.194 10.03
organic 0.669 9.41 1.482 8.83 1.530 7.38 1.571 8.37 0.065 6.52 0.04 16.62 1.556 8.02 1.515 8.52 1.445 8.84
fairtrade 0.398 4.52 1.254 5.94 1.373 4.55 1.561 5.15 0.060 6.35 0.07 22.57 1.430 5.08 1.385 5.25 1.230 4.99
recycle 1.068 14.99 2.000 10.77 2.110 9.33 2.200 10.75 0.081 12.00 0.06 14.92 2.184 10.47 2.089 10.33 1.951 10.64
Price -0.102 -11.49 -22.001 -9.27 2.948 20.53 1.078 3.56 3.733 13.91 4.19 24.43 3.410 10.06 2.119 15.58 . .

σ1

ASC1 . . 0.750 3.29 0.835 3.36 0.872 3.83 -0.018 -2.61 0.04 30.63 0.838 3.11 0.829 3.11 0.663 2.13
ASC2 . . -0.660 -3.57 0.474 1.32 0.507 1.63 0.031 6.90 0.01 18.25 -0.581 -2.13 0.494 1.64 0.570 2.46
cardpay . . 2.742 9.3 3.069 6.99 3.213 8.95 0.132 13.87 0.16 25.16 3.125 8.91 2.816 8.48 2.635 8.70
organic . . 1.596 7.73 1.616 7.1 1.620 8.13 0.070 6.88 0.07 19.35 1.663 7.78 1.567 7.12 1.448 7.30
fairtrade . . -1.183 -3.87 1.936 4.76 1.908 7.63 0.043 5.39 0.03 13.00 2.007 5.91 1.885 5.53 1.671 5.53
recycle . . 1.934 10.08 -1.892 -7.25 1.892 8.94 0.085 10.79 0.11 31.68 1.906 7.94 1.807 8.56 -1.798 -7.82
Price . . . . -1.113 -8.98 3.661 9.36 -1.072 -3.90 -1.61 -9.67 -0.815 -3.94 1.700 8.37 3.035 18.47

σ2

cardpay . . . . . . . . . . 0.03 17.22 . . . . . .
organic . . . . . . . . . . 0.04 14.57 . . . . . .
fairtrade . . . . . . . . . . -0.02 -14.63 . . . . . .
recycle . . . . . . . . . . 0.04 29.07 . . . . . .

κ . . . . . . . . . . . . 9.994 1.13 . . -13.197 -6.16
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Table 10: Bialowieza forest model results

1.MNL 2. Fixed mon. attr. 3. LN 4. LU 5. WTPS 6. WTPS P2 7. 3-param. Shifted 8. µ-shifted 9. κ-shifted

LL -14843.38 -11662.8 -10724.65 -10739.49 -11385.8 -11321.96 -10721.18 -10762.6 -10756.09
AIC 29700.76 23351.59 21477.29 21506.97 22799.6 22679.91 21472.37 21553.2 0.3203
BIC 29753.8 23450.09 21583.37 21613.05 22905.67 22816.29 21586.02 21659.27 21540.17
R2 0.0629 0.2632 0.3223 0.3214 0.2806 0.2844 0.3225 0.3208 21646.25

Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T.

µ

ASC1 -0.222 -3.58 0.252 2.67 1.175 14.31 1.151 13.93 0.091 2.67 0.06 2.33 1.165 13.61 1.187 14.20 1.118 13.27
ASC2 -0.316 -5.15 0.083 0.88 1.037 12.86 1.013 12.48 0.005 0.12 -0.01 -0.41 1.026 12.25 1.043 12.71 0.977 11.87
gos 0.568 17.95 0.728 12.56 0.790 16.09 0.774 16.12 0.247 6.34 0.25 10.66 0.787 15.57 0.822 16.14 0.803 15.74
cen 0.526 17.18 0.555 10.07 0.674 14.59 0.670 14.67 0.361 8.78 0.25 7.97 0.671 14.66 0.700 14.82 0.683 14.54
vis1 0.037 0.97 -0.078 -1.46 -0.009 -0.20 -0.013 -0.29 -0.020 -0.95 -0.26 -6.20 -0.013 -0.28 -0.007 -0.14 -0.006 -0.14
vis2 0.156 4.30 0.078 1.28 0.157 3.24 0.148 3.08 0.043 1.81 -0.17 -3.81 0.147 3.00 0.176 3.57 0.162 3.33
fee -1.262 -18.17 -2.489 -19.77 0.982 14.24 -1.766 -10.88 -0.715 -5.73 1.14 13.91 1.117 10.44 0.011 0.16 . .

σ1

ASC1 . . 1.292 8.22 0.217 2.47 -0.199 -2.38 0.287 7.24 0.22 9.47 -0.240 -3.36 -0.250 -3.21 0.235 3.13
ASC2 . . 1.241 7.29 -0.016 -0.40 -0.057 -1.60 -0.285 -5.60 -0.22 -14.62 -0.056 -1.43 -0.058 -0.74 -0.001 -0.02
gos . . 1.698 18.57 -1.045 -18.94 1.035 19.76 0.672 14.56 0.67 12.12 -1.053 -18.79 -1.087 -19.40 1.064 19.03
cen . . -1.671 -20.58 -1.071 -20.47 1.064 20.23 0.666 17.98 0.63 15.20 -1.078 -20.21 1.105 20.54 -1.079 -20.20
vis1 . . 1.044 9.37 0.698 10.56 0.675 10.33 0.372 7.13 0.08 2.09 0.693 10.37 -0.757 -11.65 0.711 10.73
vis2 . . 1.304 13.98 0.791 11.70 0.790 12.00 0.544 12.74 0.34 5.68 0.790 11.52 0.862 12.95 -0.835 -12.11
fee . . . . -1.782 -23.12 5.476 27.36 3.678 16.90 1.34 15.52 1.633 13.03 2.796 20.34 2.668 23.96

σ2

gos . . . . . . . . . . 0.07 2.15 . . . . . .
cen . . . . . . . . . . 0.16 5.27 . . . . . .
vis1 . . . . . . . . . . 0.30 6.34 . . . . . .
vis2 . . . . . . . . . . 0.27 8.49 . . . . . .

κ . . . . . . . . . . . . 0.244 1.01 . . -0.733 -5.79
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Table 11: Ecological value of Polish forests model results

1.MNL 2. Fixed mon. attr. 3. LN 4. LU 5. WTPS 6. WTPS P2 7. 3-param. Shifted 8. µ-shifted 9. κ-shifted

LL -29708.28 -21120.01 -18268.81 -18350.77 -20564.76 -20397.83 -18284.91 -18260.6 -18250.53
AIC 59432.55 42278.02 36577.62 36741.54 41169.51 40847.66 36611.82 36561.2 36541.06
BIC 59497.89 42433.19 36740.96 36904.88 41332.85 41060 36783.32 36724.53 36704.39
R2 0.1764 0.4141 0.4931 0.4908 0.4295 0.4339 0.4926 0.4933 0.4936

Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T.

µ

asc1 2.003 23.50 -1.378 -16.02 0.267 1.98 0.235 1.52 -0.456 -7.84 -0.46 -11.95 0.170 1.10 0.206 1.38 0.218 1.74
asc2 2.003 23.50 -1.270 -14.55 0.350 2.51 0.309 2.04 -0.433 -8.71 -0.44 -11.78 0.287 1.86 0.306 2.08 0.309 2.43
asc3 2.003 23.50 -1.484 -16.87 0.188 1.35 0.153 1.03 -0.484 -9.38 -0.49 -12.46 0.109 0.69 0.137 0.89 0.132 1.02
nat1 0.798 25.60 1.063 16.32 1.212 24.33 1.222 22.39 0.371 10.82 0.27 7.73 1.242 22.56 1.231 21.65 1.248 23.55
nat2 1.174 27.68 1.694 14.86 1.866 24.81 1.836 20.91 0.573 8.83 0.49 7.64 1.843 24.06 1.914 26.93 1.861 24.76
tra1 1.434 38.24 1.788 19.67 1.878 34.75 1.832 34.20 0.605 12.18 0.70 12.41 1.891 34.46 1.878 31.94 1.869 35.55
tra2 1.919 40.12 2.613 18.86 2.688 35.79 2.791 32.43 0.932 7.62 1.13 14.01 2.732 32.55 2.741 35.02 2.809 34.81
inf1 0.653 24.63 0.947 21.70 0.822 21.29 0.811 20.20 0.295 14.70 0.14 8.18 0.829 20.82 0.826 20.96 0.835 21.27
inf2 1.052 35.12 1.289 22.85 1.402 30.36 1.393 31.33 0.439 15.64 0.25 9.33 1.374 30.57 1.387 28.01 1.393 30.94
fee -1.345 -21.06 -2.973 -26.65 0.973 11.63 -2.084 -3.87 1.341 19.10 1.32 23.27 0.132 0.64 -0.064 -0.54 . .

σ1

asc1 . . 0.697 8.06 0.436 6.10 -0.514 -7.28 0.076 0.56 0.03 0.61 0.529 8.40 0.500 9.64 0.449 8.80
asc2 . . -0.513 -7.52 -0.295 -5.32 -0.305 -4.42 0.046 1.59 0.03 0.88 -0.063 -0.27 -0.109 -0.48 -0.244 -3.41
asc3 . . 0.662 9.21 0.482 9.06 -0.501 -9.44 0.128 3.73 0.09 3.73 -0.501 -9.21 -0.508 -9.19 0.488 10.70
nat1 . . 1.585 15.99 0.806 11.55 0.772 5.62 0.539 17.20 0.45 12.32 -0.883 -8.96 0.875 10.49 0.890 10.87
nat2 . . 2.398 19.46 1.373 13.95 1.303 10.55 0.763 12.19 0.67 12.43 1.467 13.20 1.471 15.49 1.487 13.02
tra1 . . 1.887 18.33 0.839 11.32 0.881 10.02 0.589 12.02 0.86 16.81 0.899 10.39 -0.843 -5.76 -0.844 -11.18
tra2 . . 2.852 25.89 1.445 15.74 1.424 17.09 0.795 14.78 0.99 14.16 1.542 15.61 1.494 7.16 1.412 15.96
inf1 . . 0.656 8.46 -0.335 -3.25 0.200 0.76 0.136 2.66 0.04 1.01 -0.348 -4.58 -0.386 -5.37 -0.400 -6.48
inf2 . . -1.079 -17.40 -0.789 -17.09 -0.774 -16.81 -0.311 -8.94 -0.28 -6.33 0.766 16.45 -0.787 -11.57 -0.790 -17.27
fee . . . . 2.313 26.70 7.624 12.87 -0.711 -12.31 -0.80 -24.24 2.915 11.00 3.340 30.24 3.209 48.06

σ2

nat1 . . . . . . . . . . 0.20 6.81 . . . . . .
nat2 . . . . . . . . . . 0.21 12.81 . . . . . .
tra1 . . . . . . . . . . -0.28 -15.29 . . . . . .
tra2 . . . . . . . . . . -0.26 -3.20 . . . . . .
inf1 . . . . . . . . . . 0.16 8.32 . . . . . .
inf2 . . . . . . . . . . 0.23 9.28 . . . . . .

κ . . . . . . . . . . . . -0.896 -4.87 . . -0.981 -7.74
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Table 12: Endangered Fish model results

1.MNL 2. Fixed mon. attr. 3. LN 4. LU 5. WTPS 6. WTPS P2 7. 3-param. Shifted 8. µ-shifted 9. κ-shifted

LL -12516.37 -8213.458 -6740.244 -6754.13 -8042.301 -7715.059 -6728.515 -6749.237 -6741.136
AIC 25048.74 16456.92 13512.49 13540.26 16116.6 15472.12 13491.03 13530.47 13514.27
BIC 25107.92 16567.89 13630.86 13658.63 16234.97 15627.48 13616.8 13648.84 13632.64
R2 0.055 0.341 0.4902 0.4892 0.392 0.4163 0.491 0.4896 0.4902

Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T.

µ

asc1 -0.197 -2.16 0.467 3.26 2.160 13.31 2.155 13.20 0.105 2.86 0.10 7.55 2.160 13.36 2.132 13.58 2.176 13.70
asc2 -0.243 -2.69 0.372 2.52 2.032 12.78 2.053 12.93 0.103 2.59 0.10 7.41 2.056 13.01 2.025 13.27 2.067 13.30
ac 0.265 10.07 0.455 7.73 0.520 10.62 0.518 10.09 0.098 7.14 -0.02 -2.76 0.498 10.08 0.518 10.60 0.515 9.98
as 0.572 15.73 1.040 10.71 1.111 14.26 1.089 13.64 0.327 10.34 -0.07 -5.72 1.068 13.44 1.101 14.51 1.070 13.99
f 0.260 10.77 0.483 9.37 0.481 10.89 0.490 11.05 0.112 6.72 -0.03 -2.97 0.477 10.84 0.500 11.47 0.474 10.72
g 0.322 11.63 0.615 10.00 0.646 13.12 0.636 12.98 0.105 7.68 -0.04 -5.11 0.629 12.86 0.641 13.10 0.629 12.89
S 0.457 12.16 0.803 9.95 0.916 11.69 0.926 11.93 0.170 3.08 -0.06 -6.58 0.929 11.84 0.961 12.36 0.925 11.53
cost -1.376 -9.20 -4.251 -12.65 0.419 1.21 -5.122 -7.22 1.947 15.79 2.18 22.43 0.485 2.93 -0.659 -2.97 . .

σ1

asc1 . . 1.695 5.65 0.516 5.23 0.555 5.10 0.309 11.29 0.32 20.31 -0.573 -6.74 -0.559 -6.73 -0.547 -6.40
asc2 . . 1.785 5.30 0.447 3.79 0.476 6.06 0.299 9.80 0.33 23.62 0.402 3.82 0.402 3.95 0.458 5.04
ac . . 1.277 11.50 0.760 11.65 0.756 12.67 0.246 4.39 -0.20 -11.19 0.735 11.78 0.743 12.40 -0.752 -12.32
as . . 2.342 14.05 1.281 17.46 1.337 15.50 0.454 7.19 -0.10 -3.66 1.288 16.87 1.304 16.77 1.273 17.04
f . . 1.012 10.08 -0.529 -7.92 0.556 8.16 0.210 4.57 0.11 11.79 0.549 8.19 0.538 8.64 0.541 8.61
g . . 1.164 12.33 0.627 10.69 0.667 11.37 0.242 5.97 0.10 8.27 0.656 11.09 0.662 11.46 -0.604 -10.84
S . . 2.191 12.63 1.378 15.73 1.337 17.21 0.401 5.00 -0.06 -5.00 1.350 16.66 1.372 16.84 1.336 16.00
cost . . . . 4.518 15.13 13.113 13.17 -0.890 -12.48 1.36 16.86 4.219 19.45 5.628 18.62 4.824 30.80

σ2

ac . . . . . . . . . . 0.17 10.79 . . . . . .
as . . . . . . . . . . 0.40 15.56 . . . . . .
f . . . . . . . . . . 0.14 14.94 . . . . . .
g . . . . . . . . . . 0.22 13.65 . . . . . .
S . . . . . . . . . . 0.32 14.79 . . . . . .

κ . . . . . . . . . . . . 0.710 2.64 . . 0.473 2.18
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Table 13: Warsaw theatres model results

1.MNL 2. Fixed mon. attr. 3. LN 4. LU 5. WTPS 6. WTPS P2 7. 3-param. Shifted 8. µ-shifted 9. κ-shifted

LL -11860.36 -8725.551 -8365.793 -8378.801 -8577.599 -8512.87 -8370.331 -8418.693 -8462.7
AIC 23732.73 17473.1 16755.59 16781.6 17179.2 0.3514 16766.66 16861.39 16949.4
BIC 23779.83 17559.46 16849.79 16875.81 17273.41 17057.74 16868.72 16955.59 17043.61
R2 0.0976 0.3356 0.3629 0.3619 0.3468 17183.35 0.3625 0.3589 0.3556

Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T.

µ

SQ 0.283 6.41 0.482 5.02 -0.114 -0.97 0.160 1.48 0.057 1.99 0.042 2.22 -0.072 -0.69 -0.262 -2.66 -0.234 -2.46
roz 0.785 22.15 1.644 20.33 2.025 20.94 1.950 20.25 0.340 23.72 0.196 5.92 2.015 20.46 1.976 21.28 1.883 21.25
sro 0.489 16.02 1.064 16.35 1.291 16.36 1.261 16.43 0.213 17.39 0.114 1.94 1.281 16.20 1.267 16.65 1.212 16.84
dzi 0.286 10.24 0.557 9.52 0.763 10.73 0.750 10.76 0.106 7.79 -0.019 -0.84 0.756 10.75 0.720 10.79 0.673 10.54
eks 0.238 9.54 0.494 8.84 0.563 8.56 0.530 8.17 0.094 8.60 0.206 9.67 0.560 8.43 0.565 8.92 0.543 8.87
cost -2.152 -32.86 -4.795 -28.48 1.898 32.97 0.186 2.17 2.054 28.55 2.090 34.18 2.064 22.64 0.922 20.43 . .

σ1

SQ . . 2.709 26.29 2.481 13.81 2.817 21.37 0.527 23.81 0.52 28.18 2.581 20.62 2.265 17.66 2.262 20.13
roz . . 1.674 17.18 1.681 15.94 1.642 15.63 0.331 33.07 -0.304 -6.93 1.705 14.35 1.595 15.67 1.563 15.49
sro . . 1.078 10.30 -1.204 -10.34 1.141 10.11 0.226 18.83 0.183 2.87 1.140 10.20 1.099 10.11 -1.073 -10.66
dzi . . 0.960 9.35 1.221 11.40 1.225 10.92 0.172 14.68 -0.061 -3.72 1.213 11.83 -1.131 -11.37 -1.073 -10.74
eks . . 0.974 9.16 1.187 11.20 1.126 9.58 0.205 9.99 0.003 0.13 1.160 10.35 -1.084 -9.68 1.025 9.62
cost . . . . 1.184 13.75 3.160 23.32 1.027 11.01 1.081 13.99 0.980 11.81 2.128 23.33 2.862 29.07

σ2

roz . . . . . . . . . . 0.149 12.22 . . . . . .
sro . . . . . . . . . . 0.100 1.84 . . . . . .
dzi . . . . . . . . . . 0.130 5.44 . . . . . .
eks . . . . . . . . . . -0.124 -4.94 . . . . . .

κ . . . . . . . . . . 1.136 2.12 . . -3.089 -18.49
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Table 14: Car choice model results

1.MNL 2. Fixed mon. attr. 3. LN 4. LU 5. WTPS 6. WTPS P2 7. 3-param. Shifted 8. µ-shifted 9. κ-shifted

LL -6930.278 -6427.591 -6270.892 -6277.871 -6326.96 -6295.403 -6271.427 -6284.827 -6310.088
AIC 13896.56 12925.18 12613.78 12627.74 12725.92 12692.81 12616.85 12641.65 12692.18
BIC 14021.01 13167.18 12862.69 12876.65 12974.83 13045.42 12872.68 12890.56 12941.08
R2 0.1495 0.2089 0.228 0.2271 0.2211 0.2231 0.2278 0.2263 0.2232

Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T.

µ

ASC1 0.064 1.86 0.076 1.82 0.082 1.82 0.076 1.70 0.005 1.02 0.009 2.17 0.079 1.74 0.080 1.74 0.070 0.58
ASC2 0.126 3.70 0.191 4.58 0.204 4.41 0.194 4.23 0.022 4.09 0.023 4.59 0.202 4.36 0.199 4.33 0.193 2.56
op cost -0.265 -12.86 1.013 9.64 1.076 9.77 1.060 8.93 -1.069 -9.88 -1.308 -15.52 1.094 10.60 1.062 9.48 1.049 8.34
range 0.453 5.60 -0.672 -3.00 -0.611 -2.87 -0.537 -2.76 -2.579 -15.82 -2.711 -14.61 -0.494 -2.50 -0.466 -2.52 -0.457 -1.80
engine electric -1.448 -10.54 -2.053 -10.43 -2.044 -9.98 -1.989 -10.03 -0.262 -10.62 -0.260 -9.12 -2.033 -9.96 -2.013 -9.61 -2.050 -4.76
Engine hybrid 0.412 5.73 0.608 6.26 0.803 7.74 0.816 7.81 0.088 7.39 0.049 5.58 0.767 7.50 0.811 7.71 0.741 7.25
perf h 0.444 9.39 -0.843 -5.55 -0.776 -4.68 -0.726 -4.95 -2.961 -22.56 -3.149 -20.29 -0.776 -4.83 -0.783 -5.09 -0.762 -4.49
perf m 0.322 7.64 -0.960 -6.15 -0.928 -5.45 -0.802 -5.55 -3.454 -15.60 -3.446 -20.70 -0.805 -5.25 -0.890 -5.84 -0.849 -1.24
car mini -1.763 -13.60 -2.707 -13.18 -3.008 -12.83 -2.973 -12.49 -0.361 -13.84 -0.327 -10.86 -2.992 -12.95 -2.959 -13.07 -2.922 -5.35
car small -0.786 -7.23 -1.223 -8.18 -1.334 -8.02 -1.332 -8.00 -0.160 -5.97 -0.073 -4.74 -1.364 -8.02 -1.342 -7.96 -1.307 -7.40
car large -0.307 -2.73 -0.513 -3.34 -0.448 -2.55 -0.496 -2.82 -0.072 -3.59 -0.006 -0.22 -0.467 -2.61 -0.425 -2.50 -0.473 -2.15
suv small -0.458 -4.15 -0.728 -5.33 -0.769 -4.80 -0.764 -4.72 -0.080 -4.48 -0.071 -4.07 -0.785 -4.86 -0.770 -4.72 -0.754 -2.15
suv mid 0.200 1.92 0.261 2.01 0.347 2.28 0.349 2.27 0.040 2.65 0.084 5.88 0.313 2.00 0.358 2.34 0.317 1.71
suv large 0.011 0.08 -0.404 -2.18 -0.192 -0.80 -0.144 -0.65 -0.059 -2.18 -0.122 -4.75 -0.186 -0.80 -0.183 -0.80 -0.201 -0.19
pickup compact -0.808 -7.20 -1.210 -7.82 -1.221 -7.10 -1.243 -7.19 -0.156 -10.02 -0.198 -5.48 -1.267 -7.42 -1.276 -7.41 -1.234 -2.91
pickup fs -0.424 -3.59 -0.750 -4.47 -0.716 -3.72 -0.683 -3.74 -0.103 -4.21 -0.244 -10.27 -0.727 -3.79 -0.747 -3.97 -0.707 -0.61
minivan -0.188 -1.56 -0.445 -3.06 -0.488 -2.61 -0.500 -2.67 -0.064 -3.44 -0.221 -7.98 -0.489 -2.55 -0.464 -2.47 -0.438 -1.43
price -0.532 -21.17 -7.571 -20.01 2.094 35.47 0.768 6.77 2.267 32.07 2.233 33.84 2.321 12.67 1.249 20.74 . .

σ1

ASC1 . . -0.335 -3.17 -0.320 -3.11 -0.352 -3.43 -0.020 -2.38 0.003 0.30 -0.300 -2.87 0.361 3.39 0.353 0.79
ASC2 . . 0.323 3.57 -0.302 -2.82 -0.260 -2.50 -0.016 -1.57 -0.027 -3.77 0.304 3.03 0.331 3.39 0.350 0.90
op cost . . 0.837 12.97 -0.903 -9.77 0.872 7.61 0.921 15.82 -0.324 -8.78 0.831 13.87 -0.895 -11.42 0.851 1.68
range . . 0.494 4.97 0.465 4.25 0.333 2.24 -0.576 -7.77 -0.150 -3.43 0.268 1.86 0.009 0.06 -0.005 0.00
engine electric . . 1.237 11.90 1.246 12.48 1.236 10.26 -0.102 -9.92 0.170 9.86 1.308 11.45 1.307 12.98 1.334 11.54
Engine hybrid . . 1.208 13.87 1.171 11.71 1.203 11.27 0.155 13.04 0.156 12.93 1.196 11.79 1.168 12.07 1.192 5.79
perf h . . 0.914 10.78 0.893 7.09 0.886 7.83 -0.857 -14.93 -1.297 -5.10 0.927 8.30 0.917 10.77 0.876 4.09
perf m . . 0.545 4.73 0.595 3.40 -0.332 -2.01 0.797 7.36 -0.247 -1.10 0.368 1.28 0.535 4.08 0.442 0.37
car mini . . 2.057 8.19 -1.963 -7.47 1.755 4.88 0.269 10.35 0.327 11.30 1.817 5.84 -2.045 -7.84 1.905 2.23
car small . . 1.171 5.30 1.088 3.94 -1.114 -3.99 -0.162 -3.75 -0.016 -0.76 1.019 3.74 1.174 4.09 1.125 0.92
car large . . -1.372 -5.73 1.164 4.66 1.202 4.53 -0.108 -6.06 -0.153 -5.46 1.235 3.95 -1.014 -3.52 -1.279 -0.99
suv small . . 0.764 2.94 0.802 3.13 -0.796 -3.13 -0.086 -4.16 0.109 9.04 0.658 2.21 0.695 2.06 0.521 0.10
suv mid . . 0.818 2.98 -0.814 -2.55 0.932 3.68 -0.096 -8.35 0.051 2.67 -1.030 -4.36 0.702 1.83 -0.738 -1.51
suv large . . -2.122 -6.80 -1.648 -5.30 1.365 4.36 -0.223 -3.46 -0.141 -8.30 -1.700 -4.48 -1.676 -5.36 -1.767 -1.09
pickup compact . . 0.855 2.70 0.635 1.24 0.963 3.25 0.141 9.24 0.161 4.20 -0.878 -3.04 -1.098 -4.44 0.828 0.70
pickup fs . . 1.615 6.13 1.660 5.38 1.515 5.68 0.228 7.12 -0.050 -2.32 -1.476 -4.94 1.590 5.72 1.518 1.38
minivan . . 1.422 6.39 1.528 5.89 -1.665 -6.08 -0.173 -10.25 0.033 3.67 -1.576 -6.30 1.414 5.47 1.395 0.95
price . . . . 0.731 15.42 2.541 16.53 -0.910 -9.62 -1.026 -11.10 0.598 6.24 1.191 17.40 1.959 6.32

σ2

op cost . . . . . . . . . . 0.364 14.90 . . . . . .
range . . . . . . . . . . 0.109 3.22 . . . . . .
engine electric . . . . . . . . . . -0.004 -0.40 . . . . . .
Engine hybrid . . . . . . . . . . 0.045 5.41 . . . . . .
perf h . . . . . . . . . . -0.177 -1.96 . . . . . .
perf m . . . . . . . . . . 0.071 1.10 . . . . . .
car mini . . . . . . . . . . -0.081 -5.23 . . . . . .
car small . . . . . . . . . . -0.096 -7.18 . . . . . .
car large . . . . . . . . . . -0.107 -4.75 . . . . . .
suv small . . . . . . . . . . -0.044 -6.49 . . . . . .
suv mid . . . . . . . . . . -0.083 -8.51 . . . . . .
suv large . . . . . . . . . . 0.080 11.12 . . . . . .
pickup compact . . . . . . . . . . 0.010 0.32 . . . . . .
pickup fs . . . . . . . . . . 0.139 12.18 . . . . . .
minivan . . . . . . . . . . 0.176 10.29 . . . . . .

κ . . . . . . . . . . . . 1.987 1.23 . . -5.007 -3.13
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Table 15: Chicken meat model results

1.MNL 2. Fixed mon. attr. 3. LN 4. LU 5. WTPS 6. WTPS P2 7. 3-param. Shifted 8. µ-shifted 9. κ-shifted

LL -8899.485 -7988.05 -7506.658 -7524.137 -7979.055 -7846.145 -7503.976 -7511.996 -7533.731
AIC 17814.97 16113.94 15160.35 15195.3 16105.14 15734.29 15164.17 15171.02 0.2982
BIC 17872.49 16006.1 15045.32 15080.27 15990.11 15885.27 15041.95 15055.99 15214.49
R2 0.172 0.2561 0.3007 0.2991 0.2568 0.2687 0.3009 0.3002 15099.46

Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T.

µ

asc1 1.630 13.54 2.240 16.15 2.910 12.97 2.804 12.66 0.075 11.13 0.070 11.32 2.894 12.18 2.885 13.12 2.727 12.92
asc2 1.579 13.14 2.131 15.69 2.834 12.53 2.732 12.26 0.070 10.80 0.067 12.79 2.818 11.78 2.814 12.74 2.651 12.47
test 0.262 8.88 0.405 8.09 0.380 8.69 0.359 8.04 0.014 6.99 -0.007 -3.80 0.369 8.43 0.382 8.77 0.364 8.50
trace 0.220 7.76 0.233 4.93 0.263 6.68 0.242 6.07 0.009 5.00 -0.002 -1.80 0.254 6.34 0.263 6.72 0.250 6.30
wel 0.315 11.03 0.403 8.33 0.406 9.92 0.383 9.03 0.014 7.27 -0.004 -2.33 0.393 9.45 0.410 10.02 0.391 9.45
irel 0.503 11.01 0.828 9.39 0.834 9.83 0.854 9.90 0.028 6.61 -0.013 -4.97 0.845 9.75 0.820 9.93 0.818 9.72
gb 0.138 3.97 0.147 2.41 0.199 3.65 0.228 4.20 0.006 2.60 -0.010 -3.77 0.214 3.82 0.199 3.60 0.212 3.87
cost -0.183 -10.14 -27.794 -9.09 2.583 12.46 -3.041 -2.24 3.458 26.10 3.720 29.01 3.083 11.04 1.845 9.23 . .

σ1

asc1 . . 1.126 5.48 -0.426 -4.33 -0.452 -4.52 0.037 4.75 0.041 8.23 -0.434 -4.44 0.445 4.24 0.411 4.03
asc2 . . 1.099 5.44 0.381 3.07 -0.382 -3.21 0.036 4.31 -0.042 -9.14 0.379 2.99 0.353 2.79 0.359 2.97
test . . 0.987 13.19 0.664 10.16 0.672 10.56 0.032 7.74 0.004 0.64 0.663 10.13 0.661 10.28 0.665 10.55
trace . . 0.916 13.57 0.553 8.96 0.573 9.05 0.030 7.45 0.021 8.69 0.551 8.92 0.562 9.33 -0.546 -8.83
wel . . 0.960 14.35 0.611 9.92 -0.619 -9.88 0.032 8.09 -0.018 -6.85 0.614 9.87 0.599 10.03 0.602 10.26
irel . . 1.590 15.35 1.365 12.49 1.439 12.00 0.052 7.87 0.000 0.09 1.373 12.50 1.351 12.61 1.312 11.82
gb . . 1.101 12.80 0.756 9.12 0.706 7.89 0.037 7.37 0.012 4.78 0.758 9.08 0.750 8.81 0.713 7.69
cost . . . . 1.709 9.70 8.754 6.22 0.422 4.48 -0.796 -8.61 1.378 7.36 2.177 16.22 -3.436 -16.14

σ2

test . . . . . . . . . . 0.024 8.37 . . . . . .
trace . . . . . . . . . . 0.011 8.50 . . . . . .
wel . . . . . . . . . . 0.021 9.11 . . . . . .
irel . . . . . . . . . . 0.051 9.42 . . . . . .
gb . . . . . . . . . . 0.016 6.96 . . . . . .

κ . . . . . . . . . . . . 9.704 1.79 . . -9.282 -3.23
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Table 16: Bluerivers model results

1.MNL 2. Fixed mon. attr. 3. LN 4. LU 5. WTPS 6. WTPS P2 7. 3-param. Shifted 8. µ-shifted 9. κ-shifted

LL -12243.8 -9783.479 -9402.132 -9428.427 -9738.848 -9712.645 -9403.041 -9421.075 -9404.396
AIC 24511.61 19612.96 18852.26 18904.85 19525.7 19493.29 18856.08 18890.15 18856.79
BIC 24600.46 19783.25 19029.96 19082.55 19703.39 19745.03 19041.19 19067.85 19034.49
R2 0.0809 0.2646 0.2931 0.2912 0.2679 0.2691 0.293 0.2917 0.293

Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T.

µ

ASC -0.463 -7.24 -2.485 -13.57 -2.515 -13.24 -2.782 -13.90 -4.266 -9.59 -4.056 -10.38 -2.600 -13.79 -2.564 -12.98 -2.562 -13.76
aue1 0.275 7.46 0.557 10.23 0.581 9.60 0.571 9.30 0.760 9.65 0.764 10.43 0.586 9.65 0.576 9.76 0.585 9.62
aue2 0.241 6.32 0.624 10.15 0.772 11.07 0.761 10.74 0.859 10.14 0.606 7.74 0.774 11.01 0.747 11.07 0.781 11.16
wald1 0.242 7.91 0.418 9.46 0.625 12.28 0.628 12.32 0.557 9.25 0.520 10.08 0.632 12.38 0.585 11.85 0.641 12.71
wald2 0.251 7.60 0.511 10.39 0.657 11.07 0.658 11.01 0.700 10.82 0.954 10.87 0.665 11.06 0.614 10.89 0.676 11.38
ufer1 0.028 0.62 0.131 2.18 0.245 3.61 0.276 3.97 0.297 4.00 0.350 5.28 0.249 3.64 0.224 3.42 0.255 3.75
ufer2 0.168 3.74 0.470 7.20 0.559 7.51 0.566 7.55 0.775 9.38 0.874 11.78 0.566 7.54 0.529 7.35 0.572 7.66
fisch1 0.167 3.32 0.611 8.51 0.552 7.01 0.492 6.17 0.819 9.48 0.402 3.91 0.538 6.67 0.591 7.67 0.517 6.39
fisch2 0.145 2.79 0.803 9.68 0.738 8.21 0.713 7.86 1.146 11.05 1.290 11.38 0.718 7.77 0.783 8.80 0.714 7.72
baden1 0.302 4.20 0.505 3.53 1.824 7.62 1.749 10.64 0.399 1.90 -1.166 -4.63 1.749 6.94 1.563 6.94 1.835 9.83
baden2 0.544 10.43 0.522 6.65 0.833 10.12 0.832 10.14 0.646 7.02 -0.002 -0.02 0.819 9.82 0.835 10.18 0.826 9.87
preis -0.447 -18.87 -0.755 -20.15 -0.309 -3.29 2.806 24.84 -0.170 -2.84 -0.088 -1.36 -0.180 -1.19 -1.243 -15.08 . .

σ1

ASC . . 4.372 20.44 2.898 10.25 4.330 17.11 6.604 12.77 6.767 13.37 3.183 12.81 2.894 12.03 3.076 13.63
aue1 . . -0.048 -1.60 0.013 0.36 -0.023 -0.71 0.022 0.31 -0.022 -0.74 0.010 0.33 0.015 0.50 0.030 0.90
aue2 . . -0.640 -6.41 -0.721 -6.80 -0.772 -7.30 0.500 2.24 -0.200 -2.16 0.750 7.16 0.725 7.17 -0.743 -7.30
wald1 . . -0.023 -1.56 0.026 1.23 0.012 0.55 -0.039 -1.44 0.023 0.46 0.014 0.53 0.017 0.81 0.006 0.30
wald2 . . -0.092 -0.89 0.488 3.93 -0.477 -3.75 -0.378 -2.74 -0.073 -0.73 0.459 3.23 0.371 2.32 -0.473 -3.47
ufer1 . . 0.016 1.11 -0.003 -0.07 -0.039 -0.91 0.036 0.96 0.032 0.80 0.028 0.82 0.006 0.24 -0.044 -0.94
ufer2 . . 0.006 0.47 -0.031 -0.62 0.068 1.10 -0.007 -0.25 -0.030 -1.19 0.032 0.56 0.009 0.22 0.090 1.32
fisch1 . . -0.811 -6.38 1.006 7.15 1.031 7.31 0.575 4.55 -0.256 -2.50 1.002 7.14 0.917 6.65 -1.030 -7.36
fisch2 . . 0.008 0.16 -0.022 -0.19 0.020 0.18 0.196 1.96 0.076 0.97 0.047 0.41 0.037 0.17 -0.073 -0.70
baden1 . . 1.832 9.42 0.988 1.63 -0.750 -1.89 2.078 8.96 -0.969 -9.43 -0.633 -0.63 -0.445 -0.38 -0.746 -1.42
baden2 . . 1.674 23.78 -1.354 -16.07 1.300 15.93 2.015 17.16 2.190 18.72 1.353 16.01 1.406 17.51 1.341 15.89
preis . . . . -2.285 -22.10 -6.709 -18.60 -0.882 -11.31 1.051 13.75 -2.081 -14.86 -2.974 -32.13 -2.011 -32.04

σ2

aue1 . . . . . . . . . . -0.009 -0.41 . . . . . .
aue2 . . . . . . . . . . 0.281 5.37 . . . . . .
wald1 . . . . . . . . . . 0.017 0.67 . . . . . .
wald2 . . . . . . . . . . -0.196 -2.67 . . . . . .
ufer1 . . . . . . . . . . -0.020 -1.08 . . . . . .
ufer2 . . . . . . . . . . 0.001 0.03 . . . . . .
fisch1 . . . . . . . . . . 0.433 5.33 . . . . . .
fisch2 . . . . . . . . . . -0.177 -3.59 . . . . . .
baden1 . . . . . . . . . . 1.735 11.71 . . . . . .
baden2 . . . . . . . . . . 0.982 10.40 . . . . . .

κ . . . . . . . . . . . . 0.093 1.17 . . 0.170 3.68

E
lectronic copy available at: https://ssrn.com

/abstract=
3878952



55

Table 17: Nitrolimit model results

1.MNL 2. Fixed mon. attr. 3. LN 4. LU 5. WTPS 6. WTPS P2 7. 3-param. Shifted 8. µ-shifted 9. κ-shifted

LL -9055.677 -5724.038 -5480.638 -5503.78 -5665.348 -5545.818 -5485.362 -5482.321 -5554.396
AIC 18141.35 11506.08 11021.28 11067.56 11390.7 11179.64 11032.72 11024.64 11168.79
BIC 18247.99 11712.24 11234.55 11280.83 11603.97 11492.43 11253.1 11237.91 11382.06
R2 0.0863 0.394 0.4449 0.4426 0.4263 0.4369 0.4443 0.4447 0.4375

Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T. Param. Rob. T.

µ

ASC 1.207 11.98 0.288 2.84 0.374 3.29 0.406 3.50 1.087 2.19 -4.051 -22.60 0.347 3.00 0.374 3.41 -1.441 -5.31
uhavel1 0.005 0.09 1.413 14.24 1.588 13.49 1.545 13.39 4.036 10.59 1.982 15.32 1.539 13.84 1.569 13.98 0.418 3.66
uhavel2 0.650 12.02 1.859 16.78 1.957 14.22 1.840 13.68 5.561 13.18 3.383 27.05 1.891 14.94 1.941 15.03 1.610 13.27
uhavel3 0.781 14.65 0.112 1.03 0.178 1.91 0.214 2.34 0.080 0.27 5.226 51.60 0.163 1.76 0.123 1.33 2.016 14.12
ohavel1 0.157 3.27 1.171 11.28 1.187 10.11 1.202 10.13 3.209 9.84 -0.161 -1.89 1.183 10.06 1.150 9.90 0.152 1.59
ohavel2 0.747 12.71 1.459 14.17 1.547 14.63 1.543 14.52 4.124 10.17 1.832 22.14 1.557 11.61 1.550 14.51 1.205 9.54
ohavel3 0.879 14.52 0.283 3.69 0.391 4.60 0.384 4.46 0.963 3.67 4.292 40.45 0.369 4.58 0.378 4.62 1.575 13.88
stadts1 -0.051 -1.20 0.781 9.26 0.720 8.19 0.662 7.50 2.235 7.35 1.127 17.79 0.739 8.59 0.748 8.87 0.402 4.67
stadts2 0.132 2.96 0.782 6.96 0.709 5.48 0.578 4.65 2.291 4.83 1.819 23.21 0.747 5.78 0.752 5.99 0.760 8.26
koeps1 0.441 6.50 0.821 13.22 0.905 12.15 0.886 12.07 2.246 9.23 1.280 9.46 0.891 12.44 0.898 12.44 0.752 5.64
koeps2 0.566 13.85 0.826 6.84 0.731 5.06 0.619 4.44 2.440 2.76 1.367 19.76 0.770 5.28 0.812 5.60 0.927 12.38
dahme1 0.334 5.39 1.323 9.85 1.142 7.09 0.949 6.14 3.700 3.85 1.386 10.29 1.179 7.45 1.237 7.77 0.778 5.02
dahme2 0.541 6.15 1.107 13.46 1.194 12.89 1.194 12.76 2.918 6.99 2.155 11.06 1.160 13.26 1.186 13.10 1.183 6.76
dahme3 0.669 13.60 -0.334 -14.97 -1.346 -10.77 -7.067 -17.80 -0.977 -9.70 1.721 21.49 -1.696 -4.25 -2.240 -21.43 1.219 13.11
cost -0.079 -13.66 -0.129 -0.33 -1.041 -4.08 -1.070 -4.14 -1.220 -2.15 -0.164 -1.66 -1.207 -4.63 -1.310 -5.28 . .

σ1

ASC . . 0.832 6.51 -0.671 -4.61 -0.455 -1.25 1.594 2.06 20.567 34.23 0.638 3.63 -0.582 -3.50 0.552 3.48
uhavel1 . . 0.118 0.42 -0.062 -0.11 -0.376 -1.62 -0.626 -1.05 0.536 11.64 -0.055 -0.16 0.399 2.25 0.404 2.43
uhavel2 . . 0.819 8.52 -0.997 -9.38 1.050 9.26 1.811 5.03 0.536 9.41 0.940 6.17 -0.995 -8.73 1.066 8.64
uhavel3 . . -0.243 -0.20 0.223 0.80 0.456 3.42 1.179 0.97 0.818 16.97 0.021 0.01 0.517 3.68 0.440 2.22
ohavel1 . . 0.905 3.24 0.974 7.23 -0.980 -6.49 1.739 1.59 0.825 16.08 0.992 7.14 -0.912 -6.59 -0.979 -6.44
ohavel2 . . -1.442 -13.09 1.482 12.22 1.422 12.42 -3.376 -4.56 1.197 17.95 1.441 13.13 1.409 13.41 -1.421 -11.90
ohavel3 . . 0.105 0.62 0.164 1.73 -0.031 -0.25 -0.393 -1.52 -1.523 -18.59 0.114 0.27 0.179 1.38 -0.224 -2.05
stadts1 . . -0.656 -5.94 0.714 6.65 0.651 4.88 -1.502 -3.86 -0.288 -7.16 0.639 5.31 0.699 6.62 0.627 5.15
stadts2 . . -0.315 -1.78 -0.199 -1.37 0.102 0.83 -0.056 -0.02 -0.646 -12.88 -0.134 -1.06 -0.047 -0.30 -0.230 -1.17
koeps1 . . -0.552 -4.87 -0.656 -6.22 -0.717 -6.81 -1.111 -1.97 0.110 2.40 -0.685 -7.14 0.696 7.12 0.756 7.62
koeps2 . . -0.483 -3.76 0.467 2.65 0.393 2.33 -1.075 -3.49 -0.836 -17.18 0.384 2.08 0.499 3.28 -0.457 -1.40
dahme1 . . -0.121 -0.25 0.471 2.48 0.592 3.73 0.865 1.30 -0.061 -0.94 0.510 3.10 0.349 1.95 0.471 1.36
dahme2 . . 0.867 8.75 1.028 9.62 -0.979 -8.96 1.790 6.21 0.691 10.88 0.942 9.79 0.993 8.97 -1.011 -9.15
dahme3 . . 6.540 15.82 2.709 19.75 10.419 16.80 8.371 9.51 1.294 23.40 3.760 5.50 3.878 26.34 2.615 11.16
cost . . . . 3.639 9.19 2.942 10.43 0.722 11.58 1.444 13.61 3.029 8.57 3.295 9.61 3.657 11.50

σ2

ASC . . . . . . . . . . -1.859 -2.42 . . . . . .
uhavel1 . . . . . . . . . . -0.528 -10.28 . . . . . .
uhavel2 . . . . . . . . . . -0.022 -0.66 . . . . . .
uhavel3 . . . . . . . . . . -0.209 -6.06 . . . . . .
ohavel1 . . . . . . . . . . 0.028 0.95 . . . . . .
ohavel2 . . . . . . . . . . 0.541 13.86 . . . . . .
ohavel3 . . . . . . . . . . -1.412 -22.93 . . . . . .
stadts1 . . . . . . . . . . 0.043 2.17 . . . . . .
stadts2 . . . . . . . . . . 0.406 9.24 . . . . . .
koeps1 . . . . . . . . . . 0.183 4.95 . . . . . .
koeps2 . . . . . . . . . . 0.095 3.72 . . . . . .
dahme1 . . . . . . . . . . 0.303 11.45 . . . . . .
dahme2 . . . . . . . . . . 0.581 7.40 . . . . . .
dahme3 . . . . . . . . . . 0.981 22.43 . . . . . .

κ . . . . . . . . . . . . -0.079 -2.90 . . 0.049 1.28

E
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Sinh-arcsinh distributions:
a broad family giving rise to

powerful tests of normality and symmetry

M.C. Jones

The Open University, UK

and Arthur Pewsey

University of Extremadura, Spain

Summary. We introduce the ‘sinh-arcsinh transformation’ and thence, by
applying it to random variables from some ‘generating’ distribution with no
further parameters beyond location and scale (which we take for most of the
paper to be the normal), a new family of ‘sinh-arcsinh distributions’. This
four parameter family has both symmetric and skewed members and allows
for tailweights that are both heavier and lighter than those of the generating
distribution. The ‘central’ place of the normal distribution in this family
affords likelihood ratio tests of normality that appear to be superior to the
state-of-the-art because of the range of alternatives against which they are
very powerful. Likelihood ratio tests of symmetry are also available and
very successful. Three-parameter symmetric and asymmetric subfamilies of
the full family are of interest too. Heavy-tailed symmetric sinh-arcsinh dis-
tributions behave like Johnson SU distributions while light-tailed symmetric
sinh-arcsinh distributions behave like Rieck and Nedelman’s sinh-normal dis-
tributions, the sinh-arcsinh family allowing a seamless transition between the
two, via the normal, controlled by a single parameter. The sinh-arcsinh fam-
ily is very tractable and many properties are explored. Likelihood inference
is pursued, including an attractive reparametrisation. A multivariate version
is considered. Options and extensions are discussed.

Keywords: Heavy tails; Johnson’s SU distribution; Light tails; Sinh-normal
distribution; Skew-normal distribution; Skewness; Transformation.

Address for correspondence: M.C. Jones, Department of Mathematics & Statistics,

The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
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1. Introduction

Families of distributions with four parameters, accounting for location, scale
and, in some appropriate senses, skewness and tailweight, cover many of the
most important aspects of any unimodal distribution on R. They can be used
to accommodate the random parts of regression-type models where, typically,
they allow potentially complex modelling of the location (and perhaps scale)
parameters while acting robustly with respect to asymmetry and weight of
tails. Subsets of the Pearson and Johnson families of distributions are famous
examples (Johnson et al., 1994, Chapter 12); stable laws (Samorodnitsky and
Taqqu, 1994), generalised hyperbolic distributions (Barndorff-Nielsen, 1978),
two-piece distributions (Fernandez and Steel, 1998), generalised distributions
of order statistics (Jones, 2004) and a very popular class of skew distributions
in which a symmetric density is perturbed by a rescaled symmetric distri-
bution function (Azzalini, 1985, Genton, 2004) are among other examples.
Many more families live on finite or semi-infinite support.

Broadly speaking, most of these families of distributions have the normal
distribution as a special, often a limiting, case with other members of the
families having heavier tails than the normal. In this paper, we propose a
novel relatively simple and tractable four-parameter family of distributions
on R with the normal distribution ‘situated centrally’ and other members
having both lighter and heavier tails. This has practical benefits especially in
affording excellent tests of the appropriateness of the normal distribution.

To describe the new distributions, consider their canonical case in which
location µ ∈ R and scale σ > 0 are removed; they can be reinstated for
practical work in the usual way by utilising σ−1fǫ,δ(σ

−1(x−µ)) where fǫ,δ(x)
is the density of a member of the new family. Here, ǫ ∈ R will turn out
to be a skewness parameter and δ > 0 will control tailweight. Associate
random variables Z and Xǫ,δ with the standard normal density φ and fǫ,δ,
respectively. Then, we propose to define fǫ,δ by what we shorthandedly call
the ‘sinh-arcsinh transformation’

Z = Sǫ,δ(Xǫ,δ) ≡ sinh{ǫ + δ sinh−1(Xǫ,δ)}. (1)

It follows that the density of the ‘sinh-arcsinh distribution’ is given by

fǫ,δ(x) =
1√
2π

δCǫ,δ(x)√
1 + x2

exp

{

−1

2
S2

ǫ,δ(x)

}

, (2)
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where Cǫ,δ(x) = cosh(ǫ + δ sinh−1(x)) =
√

1 + S2
ǫ,δ(x). Of course, f0,1(x) =

φ(x). Examples of densities (2) can be seen in Fig. 1 to follow. We note in
passing that, unlike some other families of distributions, no special functions
appear in the definition of the density of the sinh-arcsinh distribution above.

Properties of the full family (2) are considered in Section 2 and further
properties of the three-parameter symmetric subfamily thereof (correspond-
ing to ǫ = 0) in Section 3. A considerable degree of tractability is evident
in the provision of distribution and quantile functions, unimodality and mo-
ments. Tailweights are also considered. It is shown that ǫ (Section 2.2) and δ
(in the symmetric case; Section 3.1) are skewness and kurtosis parameters in
the sense of van Zwet (1964). A three-parameter subfamily of ‘skew-normal’
distributions is briefly described in Section 2.5. In Section 3.3 it is shown
how, in the symmetric case, the small δ (heavy-tailed) members of family (2)
behave like Johnson’s (1949) SU distributions while the large δ (light-tailed)
members behave like Rieck and Nedelman’s (1991) sinh-normal distributions.
In this sense, the symmetric sinh-arcsinh distributions form a seamless com-
bination of the two, the single-parameter δ controlling the transition from
one to the other via the normal distribution (δ = 1).

Likelihood fitting of the sinh-arcsinh distribution in the form of (2) with
location and scale parameters introduced is considered in Section 4. Asymp-
totic properties are considered in Section 4.1, leading to a useful reparametri-
sation in Section 4.2. Although these subsections concentrate on the three-
parameter symmetric subfamily of sinh-arcsinh distributions, we employ (and
recommend) the same reparametrisation for use in fitting the full four-
parameter family (Section 4.3). An example illustrating the modelling flexi-
bility of the full sinh-arcsinh family is presented in Section 4.4.

Likelihood ratio tests (LRTs) of normality are immediately available with-
in the sinh-arcsinh family: H0 : ǫ = 0, δ = 1. The performance of these
tests is investigated in a substantial simulation study reported in Section
5. We actually consider testing for normality against either symmetric or
asymmetric alternatives and against alternatives both within and beyond
the sinh-arcsinh family. We compare performance with that of seven of the
best performing omnibus tests of normality and conclude that our LRTs
appear to provide the best tests of normality.

A similar large simulation study of the sinh-arcsinh LRT for testing sym-
metry (H0 : ǫ = 0) was undertaken and is reported in Section 6. Again, we
observe excellent performance and show that it outperforms two competing
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omnibus tests chosen as representing the ‘state-of-the-art’.
There is an immediate and straightforward extension of the univariate

distributions above to the multivariate case by marginal transformation of
a multivariate normal distribution. The resulting multivariate distributions
are considered relatively briefly in Section 7 with some emphasis on their
dependence properties.

In Section 8, we consider three ways in which the sinh-arcsinh distribution
(2) might be/have been formulated differently. In Section 8.1, we discuss the
choice of transformation function within the class of transformations of the
form H(ǫ + δH−1(X)). In Section 8.2, we investigate alternative options to
the normal for the role of the ‘central’ symmetric distribution in the family.
And in Section 8.3, we explore a different approach to skewing the (same)
symmetric members of the family. While there prove to be a number of
interesting considerations and alternatives, the end result is a justification
— for most general use — of the choices made in (2).

We close with discussion in Section 9.

2. Properties of family (2)

2.1. Basic properties

We begin by noting several equivalent formulations of transformation (1):

Sǫ,δ(X) =
1

2

{

eǫ exp(δ sinh−1(X)) − e−ǫ exp(−δ sinh−1(X))
}

,

=
1

2

{

eǫ(
√

X2 + 1 + X)δ − e−ǫ(
√

X2 + 1 + X)−δ
}

(3)

=
1

2

{

eǫ(
√

X2 + 1 + X)δ − e−ǫ(
√

X2 + 1 − X)δ
}

. (4)

Also, sinh−1(Z) = ǫ + δ sinh−1(Xǫ,δ) or Xǫ,δ = sinh[δ−1{sinh−1(Z) − ǫ}].
Random variate generation is immediate using the latter formula.

Second, the distribution function associated with density (2) is readily
written as

Fǫ,δ(x) = Φ(Sǫ,δ(x)),

where Φ is the standard normal distribution function.
Third, since S−1

ǫ,δ (z) = S−ǫ/δ,1/δ(z), the quantile function associated with
density (2) is

Qǫ,δ(u) = S−ǫ/δ,1/δ(Φ
−1(u)), 0 < u < 1. (5)
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In particular, the median of the distribution is − sinh(ǫ/δ).
Fourth, density (2) is always unimodal. To see this, the first derivative

of log fǫ,δ(x) is of the form

− x

1 + x2
−

δS3
ǫ,δ(x)

√
1 + x2 Cǫ,δ(x)

.

Any point x0 for which this derivative is zero satisfies

δS3
ǫ,δ(x0)

√

1 + S2
ǫ,δ(x0)

= − x0
√

1 + x2
0

.

But the left-hand side of this equation is a monotonically increasing function
of x0 taking all real values while the right-hand side is a monotonically de-
creasing function of x0 taking values from 1 to −1. It follows that there can
only be one crossing point and so the density is unimodal. Of course, when
ǫ = 0, x0 = 0, else x0 6= 0.

2.2. Skewness

First, in this subsection, let us note that f−ǫ,δ(x) = fǫ,δ(−x).
We can show that, for fixed δ, ǫ acts as a skewness parameter in the sense

of van Zwet’s (1964) skewness ordering. This ordering defines G1 ≤2 G2 if
G−1

2 (G1) is convex for all x. So now let G1 = Fǫ1,δ and G2 = Fǫ2,δ for ǫ1 > ǫ2.
Then F−1

ǫ2,δ(Fǫ1,δ(x)) = Sc,1(x), where c = (ǫ1 − ǫ2)/δ > 0, and

d2F−1
ǫ2,δ(Fǫ1,δ(x))

d2x
=

√

1 + S2
c,1(x)

1 + x2





Sc,1(x)
√

1 + S2
c,1(x)

− x√
1 + x2



 ,

which is positive because Sc,1(x) > x for c > 0. Note that distribution (2)
is parametrised in such a way that, while the absolute value of skewness
increases with increasing |ǫ|, positive skewness corresponds to negative ǫ.

This attractive result about monotonicity of skewness allows us to cal-
culate the limits to the achievable range of skewness values in family (2).
Consider the Bowley skewness (e.g. Bowley, 1937) defined by

Bǫ,δ ≡
Qǫ,δ(3/4) − 2Qǫ,δ(1/2) + Qǫ,δ(1/4)

Qǫ,δ(3/4) − Qǫ,δ(1/4)
.
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(a) (b)

0.0 0.25 0.5 0.75 1.0 1.25 1.5 -4 -3 -2 -1 0 1 2 3 4

(c)

-4 -3 -2 -1 0 1 2 3 4

Figure 1: (a) densities f−∞,δ for, reading from left to right, δ =
0.5, 0.625, 0.75, 1, 1.5, 2, 5; (b) normalised densities σǫ,1fǫ,1(σǫ,1x + µǫ,1) for,
in increasing degree of skewness, ǫ = 0,−0.25,−0.5,−0.75,−1; (c)
scaled densities σ0,δf0,δ(σ0,δx) for, in decreasing value of σ0,δf0,δ(0), δ =
0.5, 0.625, 0.75, 1, 1.5, 2, 5.

This measure is monotone in ǫ because the distribution follows van Zwet’s
skewness ordering (Groeneveld and Meeden, 1984) and, in general, can take
any values between −1 and 1. It is easy to show that, as ǫ → ±∞, Bǫ,δ →
∓(kδ − 1)/(kδ + 1) where kδ ≡ exp(sinh−1(Φ−1(3/4))/δ) ≈ exp(0.6316/δ).

It is possible to identify the limiting densities fǫ,δ as ǫ → ±∞. For con-
creteness, let us work with negative ǫ (positive skewness) and call the limiting
densities f−∞,δ. Employing suitable normalisation of mean and location, the
limiting densities turn out to be

f−∞,δ(y) =
1√
2π

δ cosh(δ log 2y)

y
exp

{

−1

2
sinh2(δ log 2y)

}

,
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with support y > 0. These are the densities of Y = exp(sinh−1(Z)/δ)/2,
where Z is standard normal, and are plotted in Fig. 1(a) for a range of values
of δ. (The reader might prefer to look first at the less extreme members of
family (2) shown in Fig. 1(b) and Fig. 1(c).) Note that all the densities in
Fig. 1(a) have median 1/2! Density f5,−∞ — which we shall shortly confirm
is associated with very light tails — is not very skew, but most of the others
are. Any limitations associated with the range of available skewness values
determined above seem mild.

Similar consideration of the kurtosis role of δ is delayed until consideration
of the symmetric subfamily in Section 3.1.

2.3. Tailweight

As |x| → ∞, Sǫ,δ(x) ∼ 2δ−1sgn(x) exp(sgn(x)ǫ)|x|δ and Cǫ,δ(x) ∼
2δ−1 exp(sgn(x)ǫ)|x|δ. It follows that, retaining the position of ǫ (but not
other constants) in asymptotic formulae even though it does not affect rates,

fǫ,δ(|x|) ∼ exp(sgn(x)ǫ)|x|δ−1 exp(−esgn(x)2ǫ|x|2δ). (6)

Such tails are closely related to Weibull and ‘semi-heavy’ tails for small δ,
being heavier than exponentially decaying tails and lighter than tails decreas-
ing as a power of |x|. We also see the effect of ǫ, through exp(±ǫ), on the
relative scales of the tails of the distribution. This is a major contributory
factor to the way in which ǫ controls skewness.

2.4. Moments

The moments — which necessarily all exist as a consequence of the tail
behaviour given by (6) — are available for family (2). Using the version of
(3) associated with the inverse sinh-arcsinh transformation, we have

E(Xr
ǫ,δ) =

1

2r
E

[{

e−ǫ/δ
(

Z +
√

Z2 + 1
)1/δ

− eǫ/δ
(

Z +
√

Z2 + 1
)

−1/δ
}r]

=
1

2r

r
∑

i=0

(

r

i

)

(−1)i exp
(

(r − 2i)
ǫ

δ

)

P(r−2i)/δ

where

Pq = E
{(

Z +
√

Z2 + 1
)q}

=
1√
2π

∫

∞

−∞

(

x +
√

x2 + 1
)q

e−x2/2dx
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=
1√
8π

∫

∞

0

wq

(

1 +
1

w2

)

exp

{

−1

8

(

w − 1

w

)2
}

dw

=
e1/48(q+1)/2

√
32π

∫

∞

0

z(q−1)/2

(

1 +
1

8z

)

exp

{

−
(

z +
1

64z

)}

dz

=
e1/4

√
8π

{

K(q+1)/2(1/4) + K(q−1)/2(1/4)
}

,

using (3.471.12) of Gradshteyn and Ryzhik (1994). A property of the modi-
fied Bessel function is that K−ν(z) = Kν(z). It follows that P−q = Pq, which
confirms that odd moments of X are, indeed, zero in the symmetric case
where ǫ = 0.

In particular, we have for the mean

µǫ,δ ≡ E(Xǫ,δ) = − sinh(ǫ/δ)P1/δ

= − sinh(ǫ/δ)
e1/4

√
8π

(

K(1+δ)/(2δ)(1/4) + K(1−δ)/(2δ)(1/4)
)

and for the variance,

σ2
ǫ,δ ≡ Var(Xǫ,δ) =

1

2

(

cosh(2ǫ/δ)P2/δ − 1
)

− µ2
ǫ,δ

= cosh(2ǫ/δ)
e1/4

√
32π

(

K(2+δ)/(2δ)(1/4) + K(2−δ)/(2δ)(1/4)
)

− 1

2
− µ2

δ,ǫ.

When ǫ = 0, δ = 1, it can be readily checked that Var(X0,1) = 1.

2.5. An asymmetric subfamily

There may also be some specific interest in the particular three-parameter
subfamily of (2) in which δ = 1. In this case transformation (1) has, through
(4), the attractively simple form

Sǫ,1(X) = sinh(ǫ)
√

1 + X2 + cosh(ǫ) X.

These densities, some of which are displayed in Fig. 1(b), are true ‘skew-
normal’ distributions in the sense of admitting normality as well as asym-
metry and, by (6), retaining two normal-like tails. They share this property
with ‘two-piece’ normal distributions (Fechner, 1897, Fernandez and Steel,
1998, Mudholkar and Hutson, 2000) in which two differentially scaled halves
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of a normal distribution are joined together. However, unlike the two-piece
normal, density (2) is infinitely differentiable at all x ∈ R. The current and
two-piece densities differ from the popular skew-normal distribution with
density 2φ(x)Φ(λx) (Azzalini, 1985, Genton, 2004) for which a side-effect of
introducing the skewness parameter λ is a change to the weight in one of the
tails.

3. The symmetric subfamily

When ǫ = 0 in transformation (1), density (2) is symmetric about 0. The
properties discussed in Section 2 translate to the current special case in a
straightforward way. (Inter alia, the mean, median and mode, of course, all
reduce to 0 in this case.) In addition, computations strongly suggest that
the tails of f0,δ are sufficiently light for f0,δ to be log-concave for all δ ≥ 1.

3.1. Kurtosis

We can show that, for ǫ = 0, δ acts as a kurtosis parameter in the sense of
van Zwet’s (1964) ordering, which defines G1 ≤S G2 for distributions G1 and
G2 symmetric about zero if the function G−1

2 (G1) is convex for x > 0. In our
case, let G1 = F0,δ1 and G2 = F0,δ2 for δ1 > δ2. Then F−1

0,δ2
(F0,δ1(x)) = S0,δ(x)

where δ = δ1/δ2 > 1. Then

d2F−1
0,δ2

(F0,δ1(x))

d2x
=

δ
√

1 + S2
0,δ(x)

1 + x2





δS0,δ(x)
√

1 + S2
0,δ(x)

− x√
1 + x2



 ,

two d’s have been changed to δ’s here which is positive because δ > 1 and,
correspondingly, S0,δ(x) > x for x > 0.

From Section 2.4, we find

E(X4
0,δ) =

e1/4

√
512π

{

K(4+δ)/(2δ)(1/4) + K(4−δ)/(2δ)(1/4)

− 4
(

K(2+δ)/(2δ)(1/4) + K(2−δ)/(2δ)(1/4)
)}

+
3

8
.

It can be checked that E(X4
0,1) = 3. Given that f0,δ obeys van Zwet’s or-

dering, the classical kurtosis measure β2 = E(X4
0,δ)/σ

4
0,δ must be monotone

decreasing in δ.
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3.2. Graphs of density

A range of symmetric members of family (2) is plotted in Fig. 1(c). The
densities have been scaled to unit variance by use of the formula for the
variance in Section 2.4 (with ǫ = 0). Because of this, the densities are
in the reverse order at 0 to what they would have been unscaled, for then
f0,δ(0) = δ/

√
2π. Unimodality, tailweight and kurtosis properties from above

are well illustrated by this picture. Notice how the densities vary from the
heavy tailed when δ is small, through the normal when δ = 1, to ‘wide-
bodied’/light tailed densities when δ is large.

3.3. Links to Johnson SU and sinh-normal distributions

Consider again transformations of a standard normal random variable Z of
the form Z = Tδ(X) for some odd function Tδ generating symmetric distri-
butions for X also on R. Again, δ controls tailweight. This paper, of course,
concerns the transformation Tδ(X) = S0,δ(X) = sinh(δ sinh−1(X)). The two
‘component parts’ of transformation S0,δ(X), the sinh and arcsinh transfor-
mations, have each previously been employed separately in the same manner.
First, when Tδ(X) = δ sinh−1(X), we have the symmetric members of John-
son’s (1949) SU distributions, part of the famous family of transformation-
based distributions which also have members on R

+ and [0, 1]. See Johnson et
al. (1994, Section 12.4.3). These distributions all have tails that are heavier
than those of the normal. Second, when Z is normal and Tδ′(X) = δ′ sinh(X),
we have Rieck and Nedelman’s (1991) sinh-normal distributions. These sym-
metric distributions all have tails that are lighter than those of the normal.
Indeed, as noted by Rieck and Nedelman (using different notation) the sinh-
normal distribution is log-concave for δ′ ≥ 1, but there is a problem for
δ′ < 1: the distribution is then bimodal. This is unattractive both because
of the form of the bimodality which seems unlikely to be of practical inter-
est and because we feel it better to model bi- and multi-modality through
interpretable mixtures of unimodal components.

Now, when δ is small, it is immediate from (2) that

f0,δ(x) ≃ 1√
2π

δ√
1 + x2

exp

[

−1

2
{δ sinh−1(x)}2

]

.

This is precisely the symmetric Johnson SU density. It can also be shown
that, suitably scaled, the limiting form of f0,δ when δ → ∞ is

f0,∞(x) =
1√
2π

cosh(x) exp

{

−1

2
sinh2(x)

}

.
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This is the unimodal special case of the sinh-normal distribution with δ′ = 1.
These results are very gratifying. They show that by the use of trans-

formation sinh(δ sinh−1(X)), we have achieved a ‘seamless’ family of dis-
tributions which ‘centre on’ the normal distribution, behave very much like
Johnson’s SU distributions for tailweights heavier than normal, and like Rieck
and Nedelman’s sinh-normal distributions for tailweights lighter than normal.
Furthermore, recalling that the normal distribution corresponds to ‘δ′ = ∞’,
the correspondence with the sinh-normal distribution only goes ‘down as far
as’ Rieck and Nedelman’s δ′ = 1, i.e. automatically stopping just before
bimodality kicks in!

Similar reasoning shows why the dual transformation Tδ′′(X) =
sinh−1(δ′′ sinh(X)) is not to be recommended for further investigation. For
small δ′′, Tδ′′(X) ≃ δ′′ sinh(X) which, again, affords Rieck and Nedelman’s
(1991) sinh-normal distributions. However, these correspond to small δ′ = δ′′

cases of the sinh-normal distribution and hence to bimodality.

4. On maximum likelihood estimation

For fitting to one-sample data, family (2) is expanded to a four-parameter
family by the addition of location, µ, and scale, σ, parameters in the usual
way i.e. by fitting σ−1fǫ,δ(σ

−1(x − µ)). The theoretical work to follow in
Sections 4.1 and 4.2 concentrates specifically on the symmetric, ǫ = 0, case.
However, this work informs our fitting of the full model also, as described in
Section 4.3. Note also that one-sample considerations generalise readily to
the important wide class of regression situations in which the sinh-arcsinh
distribution can be used to provide a general family of response conditional
distributions and location (and possibly one or more other parameters) is
modelled as a simple parametric, e.g. linear, function of covariates.

4.1. Maximum likelihood asymptotics in the symmetric case

Manipulations to derive the score equations and elements of the observed
information matrix are standard if tedious, and are not given here. We move
straight to consideration of the expected information matrix which is n times
the matrix made up of values of ιηξ = E {−(∂2ℓ/∂η∂ξ)(Y )}, η, ξ = {µ, σ, δ}.
We find we have the special structure

ιµµ = fm(δ)/σ2, ιµσ = 0, ιµδ = 0,

ισσ = fs(δ)/σ
2, ισδ = fc(δ)/σ, ιδδ = fd(δ),

11
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Figure 2: The asymptotic correlations between σ̂ and δ̂ (solid line) and be-
tween σ̂δ and δ̂ (dashed line) in the symmetric case, plotted as a function of
log10 δ.

say, where the f functions are all independent of µ and σ. This structure is
a consequence of the symmetry of the fitted model. In fact, we have

fm(δ) = E

[

δ2Z2(3 + 2Z2)

C2
0,1/δ(Z)(1 + Z2)

− δS0,1/δ(Z)Z3

C3
0,1/δ(Z)

√
1 + Z2

+
{1 − S2

0,1/δ(Z)}
C4

0,1/δ(Z)

]

,

fs(δ) = E

[

S2
0,1/δ(Z)

{

δ2Z2(3 + 2Z2)

C2
0,1/δ(Z)(1 + Z2)

− δS0,1/δ(Z)Z3

C3
0,1/δ(Z)

√
1 + Z2

+
{1 − S2

0,1/δ(Z)}
C4

0,1/δ(Z)

}]

+1,

fc(δ) = −E

[

S0,1/δ(Z)Z2

C0,1/δ(Z)(1 + Z2)

{

Z
√

1 + Z2 + (3 + 2Z2) sinh−1(Z)
}

]

,

and

fd(δ) =
1

δ2

(

1 + E

[

Z2(3 + 2Z2)

(1 + Z2)
{sinh−1(Z)}2

])

,

where Z ∼ N(0, 1).
It is immediately clear that the location and scale parameters are asymp-

totically independent as are the location and shape (δ) parameters. How-
ever, because ισδ 6= 0, the scale and shape parameters are not asymptotically
independent. In fact, Corr(σ̂, δ̂), which does not depend on (µ or) σ asymp-
totically, equals

− ισδ√
ισσιδδ

= − fc(δ)
√

fs(δ)fd(δ)
.
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Figure 3: Log10 of the asymptotic standard deviation plus 1
2
log10 n for δ̂

(solid line), µ̂ (dot-dashed line) and σ̂ (dashed line) in the symmetric case
plotted as a function of log10 δ. The solid curve is actually the log standard
deviation minus log10 δ while the other two curves depict the log standard
deviation minus log10 σ.

It is clear that ισδ < 0 and hence that the asymptotic correlation between
σ̂ and δ̂ is positive. This correlation can be plotted as a function of δ (solid
line in Fig. 2). The correlation is very high for almost all δ. At first, this
is disappointing, but it proves to be a standard property of scale/tailweight
families of symmetric distributions and reflects the fact that one cannot really
tell the difference between changing scale and changing tailweight at all easily
in practice.

It is also the case that the asymptotic variance of δ̂ does not depend on
σ; it is given by n−1 times

ισσ

ισσιδδ − ι2σδ

=
fs(δ)

fs(δ)fd(δ) − f 2
c (δ)

.

The logged relative asymptotic standard deviation (plus 1
2
log10 n) is plot-

ted as the solid curve in Fig. 3; it is necessarily rather large. (See Section 4.3
for comments on the practical effect of this.) While the location parameter
µ is in the happy position of being estimated asymptotically independently
of σ and δ, the asymptotic variances of the estimates of each are of the form
n−1σ2hi(δ) where i = µ, σ. So, reasonably enough, both standard deviations
increase in direct proportion to the value of σ. We have that

hµ(δ) =
1

fm(δ)
and hσ(δ) =

fd(δ)

fs(δ)fd(δ) − f 2
c (δ)

.
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These two functions are also shown, square rooted and logged, in Fig. 3 as
dotted and dashed lines, respectively.

4.2. Reparametrisation

In principle, at least, it is possible to provide an orthogonal parametrisa-
tion of the form (µ, σF (δ), δ). Since the correlation between σ̂F (δ̂) and δ̂
is proportional to (log F )′(δ)fs(δ) − fc(δ), this would be achieved by set-
ting (log F )′(δ) = fc(δ)/fs(δ). Unfortunately, this is insufficiently tractable
to provide a workable formula. However, as shown in Fig. 2, the asymptotic
correlation between σ̂ and δ̂, which we are trying to alleviate via reparametri-
sation, is highest for large δ. This suggests seeking a large δ approximation
to the above.

To this end, we find that, for large δ, fc(δ) ≃ −(C+S)/δ and fs(δ) ≃ 1+S
where

C = E

{

Z3 sinh−1(Z)√
1 + Z2

}

and S = E

[

Z2{sinh−1(Z)}2(3 + 2Z2)

1 + Z2

]

.

Numerically, we find that C ≈ 1, at least correct to 7 decimal places (we have
been unable to prove exact equality to unity). We then find that F (δ) ≃ δ−1,
so suggesting a simple reparametrisation in which σ is replaced by σδ ≡ σ/δ.
The asymptotic correlation between σ̂δ and δ̂ is

− δfc(δ) + fs(δ)
√

fs(δ){δ2fd(δ) + 2δfc(δ) + fs(δ)}
.

This is plotted as the dashed line in Fig. 2. It is clear that we have achieved
a general lowering of the asymptotic correlation to less extreme values. We
have not achieved the very small correlation for large δ that might have been
expected because the variance of σ̂δ tends to zero alongside the covariance for
large δ. However, the reduction in correlation that we have achieved proves
to make a considerable difference in practice.

4.3. Practical implementation in the general case

We employ (and recommend) the reparametrisation just derived in fitting
the full four-parameter sinh-arcsinh distribution (as well as its symmetric
subfamily) to data, i.e. utilising {µ, σδ, ǫ, δ} and then setting σ̂ = σ̂δ δ̂. This
solved severe numerical problems encountered in the original parametrisa-
tion when δ > 1. We made use of the Nelder and Mead (1965) simplex

14
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Figure 4: Histogram of the snow depth data together with the fitted densities
for family (2) (solid line) and its symmetric subfamily (dashed line).

algorithm to perform maximisation of the log-likelihood. Using this direct
search approach, it proves helpful to optimise over µ/

√

1 + µ2 ∈ (−1, 1),
σδ/(1 + σδ) ∈ (0, 1), ǫ/

√
1 + ǫ2 ∈ (−1, 1) and δ/(1 + δ) ∈ (0, 1) and then

back-transform. In practice, we have not come across examples of multiple
maxima occurring on the log-likelihood surface. However, as is generally the
case when using numerical optimisation techniques, it is advisable to try a
range of different starting values in an attempt to ensure that the global
maximum is identified. We find that each of µ, σδ and ǫ is estimated well
but large δ-values are not estimated so precisely. The log-likelihood surface
remains flat when δ is large, corresponding to the large asymptotic variance
of δ̂ shown in Fig. 3.

4.4. Example

In order to briefly illustrate the modelling flexibility of family (2), we present
an analysis of n = 114 measurements of the depth of snow (in cm) taken
on an ice floe in the eastern Asmundsen Sea, Antarctica, in March 2003.
See Banks (2006, Chapter 6) for details, noting that these data pertain to
“Floe 2” and Banks’s analysis included preliminary use of a symmetric sinh-
arcsinh distribution. A histogram of the data appears in Fig. 4. Results
for the maximum likelihood fits of family (2) and its normal (δ = 1, ǫ = 0),
normal-tailed (δ = 1) and symmetric (ǫ = 0) submodels are given in Table
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Table 1: Parameter estimates for the fits to the snow depth data of, reading
from right to left, family (2) and its symmetric (ǫ = 0), normal-tailed (δ = 1)
and normal (δ = 1, ǫ = 0) submodels. The maximised log–likelihood (lmax),
AIC and BIC values, and p-value for the chi–squared goodness-of-fit test, are
included as fit diagnostics.

Model
Parameter Normal Normal tails Symmetric Family (2)

µ 39.24 24.66 40.49 -52.91
σ 20.20 17.88 349139.3 34.27
δ (1) (1) 14028.5 3.99
ǫ (0) -0.52 (0) -6.75

lmax -504.39 -502.50 -497.72 -494.98
AIC 1012.78 1011.00 1001.44 997.96
BIC 1018.25 1019.21 1009.65 1008.90

p-value 0.016 0.004 0.228 0.213

1. All three likelihood-based diagnostics in Table 1 indicate that the fit
for the full family, with its lighter than normal tails (δ > 1) and positive
asymmetry (ǫ < 0), is best, followed by that for its symmetric subfamily. The
p-values of likelihood-ratio tests for normality, normal tails and symmetry,
calculated using the usual asymptotic chi-squared approximation, are 0.000,
0.000 and 0.019, respectively. So, the fit for the full family appears to offer a
significantly better fit than any of its three submodels. Table 1 also contains
the p-values for the chi-squared goodness-of-fit test performed using the class
intervals of the histogram shown, some of which were combined to obtain
expected values of at least 5. The p-values support the adequacy of the two
best fits and rule out the normal and normal-tailed submodels. The densities
of the two best fits are superimposed on the histogram in Fig. 4. Comparing
them with the histogram, there is perhaps some indication of multimodality
in the data. However, this could be an artifact of the binning used and the
rounding of the data to the nearest whole cm during measurement. It would
certainly be difficult to conceive of a better unimodal fit to the data.

In the next two sections we present a substantial practical investigation
of the use of sinh-arcsinh distributions in testing normality and symmetry.
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5. Testing normality

The central position of the normal distribution within family (2) allows test-
ing of normality within the family via standard likelihood ratio tests (LRTs).
However, since family (2) is sufficiently broad to, at some level, provide an
approximation to any unimodal distribution, we propose that sinh-arcsinh-
based LRTs of normality also be used as general purpose tests of normality.
To that end, in this section, we explore the size and power of sinh-arcsinh-
based LRTs of normality both within and beyond the sinh-arcsinh family of
distributions.

5.1. Testing normality against symmetric alternatives I: size

It is probably most usual to test for normality in a situation where one is
willing to assume symmetry of the distribution of interest. In that case,
the appropriate LRT is a statistic of the form L = −2 log(ℓ0/ℓ1) where ℓ0

represents the maximum of the log-likelihood function for an assumed nor-
mal distribution and ℓ1 the maximum of the log-likelihood function assuming
that the sample was drawn from a symmetric sinh-arcsinh distribution i.e.
σ−1f0,δ(σ

−1(x − µ)) where fǫ,δ(x) is given by (2). ℓ1 has to be calculated
numerically. This being a regular problem, the asymptotic distribution of
L is, of course, χ2

1 (the single degree of freedom being associated with set-
ting δ = 1 in the symmetric subfamily to achieve normality). For testing
normality against asymmetric alternatives, see Section 5.3.

We investigated the distribution of 10,000 values of L based on samples
generated from the standard normal distribution. The χ2 approximation to
the sampling distribution of L is, as expected, poor for small sample sizes,
rapidly improving with increasing n such that for n ≥ 50 it would appear to
provide a very good approximation to the true sampling distribution. How-
ever, the tails of the χ2 approximation to the simulated sampling distribution
are in reasonably close agreement even for small n. Indeed, in addition to
being adequate for large n, the asymptotic critical values for the test are
closest to the simulated critical values in certain cases associated with small
n! Overall, we consider it reasonable, as well as simplest, to use the critical
values of the asymptotic χ2

1 distribution when analysing samples of any size.
This is further vindicated in the studies that follow in the next section.
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5.2. Testing normality against symmetric alternatives II: power

There exists a well-established literature addressing the problem of testing
univariate data for normality. Renewed recent interest in this inferential
problem can be found in the papers of Zhang and Wu (2005) and Thadewald
and Büning (2007), amongst others. In the light of the findings presented
in those two papers, we conducted a simulation study designed to compare
the performance of the LRT of normality with those of the following seven
competitive tests for a nominal significance level of 5% (the description of
each test is preceded by the abbreviation we will use when referring to it):

JB. The (one-sided) test of Jarque and Bera (1980), the test statistic of
which is a function of the coefficients of skewness and kurtosis. We used the
corrected critical values for this test presented in Table 2 of Thadewald and
Büning (2007).

D. The (two-sided) test of D’Agostino (1971, 1972). Up to a constant, the
test statistic is the ratio of Downton’s (1966) linear estimator of the standard
deviation to the sample standard deviation. The critical values for this test
are given in D’Agostino’s papers.

AD. The (one-sided) empirical distribution function (EDF)-based test of An-
derson and Darling (1952). We used the corrected critical values for this test
presented under the name CMW in Table 2 of Thadewald and Büning (2007).
(Those authors do not seem to realise that their CMW statistic is in fact the
A2 statistic of Anderson and Darling.)

CM. The (one-sided) Cramér-von Mises EDF-based test with statistic identi-
fied as CM in Thadewald and Büning (2007). We used the corrected critical
values given in their Table 2.

SW. The (one-sided) test of Shapiro and Wilk (1965). We used Algorithm
AS R94 of Royston (1995) to compute the test statistic and its p-value.

ZA and ZC. The (one-sided) nonparametric likelihood-ratio-based tests with
test statistics ZA and ZC of Zhang and Wu (2005). We used the corrected
critical values for these tests given in Tables 1 and 2, respectively, of that
paper.

Our power simulations concern two sets of alternative distributions; here
is the first. For each combination of n = 10, 20, 50, 100, 200 and δ = 0.2, 0.4,
0.6, 1, 2, 10, 10, 000 random samples of size n were simulated from the sym-
metric subfamily of (2) with ǫ = 0. All eight tests were then applied to
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each simulated sample. (Setting µ = 0 and σ = 1 throughout is appropriate
since all tests are location/scale invariant.) In Fig. 5, the proportion of the
10,000 samples for which the null hypothesis of normality was rejected in a
nominally 5% test is plotted against λ = δ/(1 + δ). Remember that δ = 1,
i.e. λ = 0.5, corresponds to a normal distribution, so this figure provides
information concerning both the true size and power of the different tests.

Considering the content of Fig. 5, we can draw the following conclusions.
Firstly, all seven rival tests maintain the nominal significance level of 5%
very closely. So does the LRT, in general, although it is slightly conservative
for n = 10 (size ≃ 0.03) and slightly liberal for n = 50 (size ≃ 0.08).
Secondly, the LRT and D tests have the best overall power characteristics;
the LRT and CM tests are the most powerful against alternatives with 0 <
λ < 0.45 (i.e. distributions with tails that are far heavier than normal),
and, for n ≥ 20, the LRT is the most powerful against alternatives with
lighter than normal tails (λ > 0.5). D has second best power for these latter
alternatives; it also has high power for λ-values in the region of 0.6–0.8, as
does JB. However, for alternatives with lighter than normal tails, JB has the
worst power signature. Indeed, even for samples as large as 100, its power
generally lies below the nominal significance level. As is to be expected, the
power of all eight tests generally increases with n for fixed δ. The increase in
power with n is particularly noteworthy against the alternatives with lighter
than normal tails (λ > 0.5). Note that these results provide interesting
further information concerning the relative performance of the competing
test to complement the findings of Zhang and Wu (2005) and Thadewald and
Büning (2007), particularly concerning the ZA and ZC tests in the former
and the Jarque-Bera test in the latter.

Of course, testing within the symmetric sinh-arscinh family, as just con-
sidered, is the situation for which our LRT was designed and for which it
must be expected to be particularly strong as, gratifyingly, it proved. The
second set (of three) alternative distributions are not members of class (2).
These are: (i) the very heavy-tailed t distribution on two degrees of freedom
(t2); (ii) the fairly-heavy-tailed logistic distribution; and (iii) a light-tailed
distribution due to M.L. Tiku with density 16(1 + x2/4)2φ(x)/27 (e.g. Tiku,
Islam and Selcuk, 2001). The results of our power simulations against these
alternative distributions are given in Fig. 6.

From Fig. 6(a), corresponding to the t2 alternative distribution, it can be
seen that all eight tests are relatively powerful. For larger values of n there is
little difference in their powers; for n = 20, 50, JB and D tend to dominate.
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Figure 5: The proportion of samples for which the null hypothesis of normal-
ity was rejected in a nominally 5% test, plotted against λ = δ/(1 + δ). The
proportions were calculated using 10,000 random samples from alternative
sinh-arcsinh distributions with ǫ = 0, δ = 0.2, 0.4, 0.6, 1, 2, 10 and sample
sizes of: (a) n = 10; (b) n = 20; (c) n = 50; (d) n = 100; (e) n = 200. The
solid lines connect the results of the LRT, and the dashed lines those for the
other seven tests: JB (solid square); D (solid triangle); AD (solid diamond);
CM (open square); SW (open circle); ZA (open triangle); ZC (open inverted
triangle). The dotted line is at the nominal level of 0.05.
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Figure 6: The proportion of samples for which the null hypothesis of normal-
ity was rejected in a nominally 5% test plotted against n. The proportions
were calculated using 10,000 random samples of size n = 10, 20, 50, 100, 200
from the: (a) t2; (b) logistic; and (c) Tiku short-tailed distributions. The
solid lines connect the results of the LRT, and the dashed lines those for the
other seven tests: JB (solid square); D (solid triangle); AD (solid diamond);
CM (open square); SW (open circle); ZA (open triangle); ZC (open inverted
triangle). The dotted line is at the nominal level of 0.05.
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Fig. 6(b) portrays the equivalent results for the logistic distribution. Clearly,
none of the tests is very powerful against this alternative. The JB test has
the best overall performance. D also performs relatively well, particularly
for larger values of n. The LRT performs relatively poorly for samples of
size n ≤ 50 but its relative performance improves with increasing n. The
performance of CM is worst overall. Finally, the results for Tiku’s short-
tailed distribution are displayed in Fig. 6(c). Again, none of the tests is
particularly powerful. Indeed, for samples of size 10 and 20 the power lies
below, and bobs around, respectively, the nominal level of the tests. LRT is
clearly the most powerful, followed by D. The powers of five of the other six
tests are very similar, with the JB test being very poor.

Overall, the LRT seems very competitive in most symmetric situations
with the best of existing tests which would appear to be D’Agostino’s test
D.

5.3. Testing normality against asymmetric alternatives

If one is not willing to assume symmetry, testing for normality can still be
accomplished from within the full four-parameter sinh-arcsinh family. The
appropriate LRT now compares the maximised log-likelihood function for
an assumed normal distribution with the maximum of the log-likelihood as-
suming the sample was drawn from σ−1fǫ,δ(σ

−1(x− µ)), the asymptotic dis-
tribution of the LRT statistic now being χ2

2. Simulations from the normal
distribution yielded results in keeping with the test’s ability, as in the sym-
metric case, to maintain its nominal significance level using its asymptotic
sampling distribution.

Because symmetry is no longer being assumed in constructing the test
statistic, the power of the ‘asymmetric LRT’ is necessarily a little lower than
that of the previous ‘symmetric LRT’ when normality is tested within a truly
symmetric situation. The effect is quite small and the overall performance
of the asymmetric LRT remains excellent. For example, if the powers of the
symmetric LRT in Fig. 5 were replaced by those of the asymmetric LRT:
(a) for large δ (light tails), the previous superiority of the symmetric LRT is
reduced to a performance essentially on a par with the second-based method,
namely D; (b) for very small δ (the heaviest tails), the LRT remains almost as
good as the (otherwise best) CM test; (c) for other δ < 1 (tails heavier than
normal), the LRT continues to have a quality of performance which is in the
middle of the pack of tests considered. These observations are also reflected
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for the non-sinh-arcsinh symmetric alternatives of Fig. 6 in accordance with
their relative tail weights.

Fig. 7 shows simulated powers for the asymmetric LRT and the same set of
seven competing tests for normality within a set of asymmetric distributions,
namely sinh-arcsinh densities with ǫ = 1. Overall, the LRT is best. Indeed,
the ordering of the power performances of the tests is by and large the same as
in Fig. 7’s symmetric counterpart (Fig. 5) with two notable exceptions: (i) the
D test, which was previously competitive with the LRT, is very badly affected
by the presence of asymmetry; and (ii) the LRT maintains its ‘first place’
even for alternatives with slightly heavier tails than those of the normal.
The performance of D is particularly poor for a middle range of values of δ
including fairly heavy tails when n is small, normal tails when n is small and
moderate, and fairly light (but not the lightest) tails even when n = 200.
We note also that, for small n, the combination of non-light tails (δ ≤ 1) and
skewness makes for a greater disparity in power performance between the best
and the poorest tests. In further experiments with a number of asymmetric
alternatives outside the sinh-arcsinh class, the relative performances of tests
described here — including the mostly leading performance of the LRT and
the many poor performances of the D test — were upheld, again in accordance
with their levels of tail weight.

5.4. Conclusion

Taking both symmetric and asymmetric alternatives into account, the LRT
seems to be the best of the options considered here (and its competitors have
been chosen because of claims of leading performance elsewhere).

6. Testing symmetry

We can also test for symmetry (about an unknown centre) by employing an
LRT within the full sinh-arcsinh family of the null hypothesis that ǫ = 0.
The asymptotic null distribution of the test, which we shall use, is, again,
χ2

1.
We will compare the size and power performance of our LRT of symmetry

(again, for a nominal significance level of 0.05) with those of two other general
tests of symmetry. These particular tests were chosen because they were
found to perform well in extensive simulation comparisons reported in Cabilio
and Masaro (1996). They are:
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Figure 7: The proportion of samples for which the null hypothesis of normal-
ity was rejected in a nominally 5% test, plotted against λ = δ/(1 + δ). The
proportions were calculated using 10,000 random samples from asymmetric
sinh-arcsinh distributions with ǫ = 1, δ = 0.2, 0.4, 0.6, 1, 2, 10 and sample
sizes of: (a) n = 10; (b) n = 20; (c) n = 50; (d) n = 100; (e) n = 200. The
solid lines connect the results of the LRT, and the dashed lines those for the
other seven tests: JB (solid square); D (solid triangle); AD (solid diamond);
CM (open square); SW (open circle); ZA (open triangle); ZC (open inverted
triangle). The dotted line is at the nominal level of 0.05.
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SK. The test of Cabilio and Masaro (1996), the test statistic of which is the
simple function SK =

√
n(X̄ − m)/s where X̄, m and s denote the sample

mean, median and standard deviation (with divisor n), respectively. We used
the critical values for this test presented in Table 1 of Cabilio and Masaro
(1996) which were calibrated against the normal distribution.

TN. The second test statistic was the more involved one of Boos (1982) which
is based on the Hodges-Lehmann estimator. We used the critical values for
this test presented in Table 1 of Boos (1982) which were calibrated against
the logistic distribution.

6.1. Testing symmetry I: size

In Fig. 8, simulated values of the size of each of the LRT, SK and TN tests are
presented for a variety of symmetric members of the sinh-arcsinh family. It
can be seen that the LRT is by far the best test in terms of its overall ability
to maintain the nominal significance level. SK tends to be very liberal when
the distribution is either heavy- or light-tailed. TN is extremely liberal when
the distribution is heavy-tailed and marginally liberal when it is light-tailed.
When the underlying distribution is normal (λ = 0.5), all three tests maintain
the nominal level increasingly well with increasing n.

We also computed the size of the tests of symmetry for data simulated
from the t2, logistic and Tiku distributions used above as symmetric alterna-
tives to the normal distribution in Fig. 6. Summarising our results: (a) for
the heavy-tailed t2 distribution, SK holds the nominal level best, whilst the
LRT and especially TN are markedly liberal; (b) for the logistic distribution,
TN holds the nominal level well, SK is marginally conservative and the LRT
marginally liberal; and (c) for Tiku’s light-tailed distribution, all three tests
hold the nominal level pretty well, with the LRT and TN holding it best,
SK being rather liberal. These results collectively chime with earlier obser-
vations: Cabilio and Masaro (1996) observed that the size of their test, SK,
is inflated when the underlying distribution is uniform or Cauchy, while both
Boos (1982) and Cabilio and Masaro (1996) noted that TN can be extremely
sensitive to heavy-tailed distributions, tending to mistakenly confuse such
tails with asymmetry.

6.2. Testing symmetry II: power

We start this section by investigating the power of the LRT, SK and TN tests
against alternative, asymmetric, distributions taken from the sinh-arcsinh
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Figure 8: The proportion of samples for which the null hypothesis of symme-
try was rejected in a nominally 5% test, plotted against λ = δ/(1 + δ). The
proportions were calculated using 10,000 random samples from symmetric
sinh-arcsinh distributions (ǫ = 0), with δ = 0.2, 0.4, 0.6, 1, 2, 10 and sample
sizes of: (a) n = 10; (b) n = 20; (c) n = 50; (d) n = 100; (e) n = 200.
The solid lines connect the results of the LRT, and the dashed lines those
for the other two tests: SK (square); TN (triangle). The dotted line is at
the nominal level of 0.05. The results for TN are missing from panel (e)
as the computational burden (in terms of storage) proved too much for our
programs to handle.

26



(a) (b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

λ

p
o

w
e

r

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

λ

p
o

w
e

r

(c) (d)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

λ

p
o

w
e

r

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

λ

p
o

w
e

r

(e)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

λ

p
o

w
e

r

Figure 9: The proportion of samples for which the null hypothesis of symme-
try was rejected in a nominally 5% test, plotted against λ = δ/(1 + δ). The
proportions were calculated using 10,000 random samples from asymmetric
sinh-arcsinh distributions with ǫ = 1, δ = 0.2, 0.4, 0.6, 1, 2, 10 and sample
sizes of: (a) n = 10; (b) n = 20; (c) n = 50; (d) n = 100; (e) n = 200.
The solid lines connect the results of the LRT, and the dashed lines those for
the other two tests: SK (square); TN (triangle). The dotted line is at the
nominal level of 0.05. The results for TN are again missing from panel (e).
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Figure 10: The proportion of samples for which the null hypothesis of sym-
metry was rejected in a nominally 5% test plotted against n. The proportions
were calculated using 10,000 random samples of size n = 10, 20, 50, 100, 200
from the log F distribution with: (a) 4 and 2; (b) 16 and 2; and (c) 64 and
2 degrees of freedom. The solid lines connect the results of the LRT, and
the dashed lines those for the other two tests: SK (square); TN (triangle).
The dotted line is at the nominal level of 0.05. The results for TN are again
missing for n = 200.
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family with ǫ = 1. See Fig. 9 for results. It can be seen that, overall,
the LRT is the most powerful of the tests. For the smallest-sized sample
from the heaviest-tailed distribution, TN has higher power but it should be
recalled that this test is unable to maintain the nominal level for heavy-
tailed symmetric distributions within family (2). The LRT also performs
quite poorly against extremely light-tailed alternatives, but all three tests
have very low power in such cases.

We also made extensive investigations of the power of these three tests to
detect asymmetry outside the sinh-arcsinh family. To this end, we investi-
gated — in order of increasing tail weight — the extreme value distribution
and a range of skew-normal (Azzalini, 1985), log F (e.g. Baghdachi and Bal-
akrishnan, 2008) and skew t (Jones and Faddy, 2003) distributions. Results
for each distribution were broadly similar: the LRT was most powerful, fol-
lowed by the TN test and then the SK test. Fig. 10 shows these results
for a range of log F distributions, those for extreme value and skew-normal
alternatives looking very similar. Only in the case of the heavy-tailed skew t
distributions was the power performance of the LRT closely matched by that
of TN.

6.3. Conclusion

The sinh-arcsinh-based LRT clearly outperforms two omnibus tests for sym-
metry that we chose for comparison as being ‘state-of-the-art’, both (unsur-
prisingly) within the sinh-arcsinh family but also (much less necessarily) in
a wide range of situations outside the sinh-arcsinh family too.

7. The multivariate case

Multivariate extensions of the univariate distributions arise naturally and
immediately by transforming the univariate marginals of a standardised (but
correlated) multivariate normal distribution. By so doing, we choose to model
skewness and/or tailweight variations directly on the original scales of the
variables. So, in d dimensions, let R be a correlation matrix and define the
vector X by Zi = Sǫi,δi

(Xi), i = 1, ..., d, where Z ∼ Nd(0, R), so that

fǫ,δ(x) =
1

√

(2π)d|R|

d
∏

i=1

{

δiCǫi,δi
(xi)

√

1 + x2
i

}

exp

(

−1

2
Sǫ,δ(x)′R−1Sǫ,δ(x)

)

. (7)

In an abuse of notation, the vector z has been written Sǫ,δ(x).
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Figure 11: The correlation between X and Y in the symmetric marginals
case, plotted as a function of log10 δ1 and log10 δ2: here, ρ = 0.7.

The univariate marginals of this distribution are sinh-arcsinh distribu-
tions by construction. If z is partitioned into (z1, z2) and x, X and R are
partitioned conformably, X1|x2 is the distribution of S−1

ǫ1,δ1
(Z1)|z2 = Sǫ2,δ2(x2)

where Z1|z2 ∼ N(R12(R22)
−1z2, R11 − RT

12(R22)
−1R12). Notice that now the

transformation is applied to an unstandardized normal distribution, which
means that conditional distributions are members of a wider (and not very
tractable) family of distributions that will not be pursued further. The main-
tenance of unimodality in univariate distributions augurs well for the uni-
modality of the multivariate case, and we have no counterexamples from our
limited experience with these distributions. All moments of the distribution,
of course, exist.

The covariance between any two elements of X is not generally tractable.
It is, however, plotted in the symmetric marginals (ǫ1 = ǫ2 = 0) case
in Fig. 11 as a function of δ1, the parameter in the x-direction, and δ2,
the parameter in the y-direction, for ρ = 0.7. A number of properties of
the multivariate distribution are illustrated by this plot. First, the sign of
ρ12 = Corr(S−1

ǫ1,δ1
(Z1), S

−1
ǫ2,δ2

(Z2)) is the same as the sign of ρ for all ǫ1, δ1, ǫ2, δ2.
This follows because of the positive (negative) quadrant dependence of the
bivariate normal distribution with ρ > (<) 0 and the strictly increasing na-
ture of the marginal transformations (see, for example, results in Joe, 1997).
Second, |ρ12| ≤ |ρ|. This inequality can be found in literature stemming
from Gebelein (1941), see, for example, Koyak (1987) and references therein.
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Figure 12: The bivariate sinh-arcsinh density with ρ = 0.7 and (a) δ1 = 0.135,
δ2 = 1, (b) δ1 = δ2 = 0.27.

Concentrating on the symmetric marginals case as in Fig. 11, we note that:
(i) the value of the correlation is ρ = 0.7 only at the point δ1 = δ2 = 1 and is
lower elsewhere; (ii) the value of the correlation remains close to ρ = 0.7 for
all δ1, δ2 ≥ 1 i.e. lighter tails; and (iii) the absolute value of the correlation
decreases as one or both tails get heavier. In particular, this makes sense
in the case δ1 < 1, δ2 = 1 where the density is spread much more in the x-
direction than in the y-direction. For an illustration of this, see the density
plotted in Fig. 12(a); (iii) this last effect is reduced somewhat if both tails
get heavier. The density for δ1 = δ2 = 0.27 is plotted in Fig. 12(b).

It may also be of interest to consider the local dependence function de-
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fined as γ(x, y) = ∂2 log fǫ,δ(x, y)/∂x∂y. This was introduced as a continuous
analogue of the local log odds ratio by Holland and Wang (1987) and alter-
natively justified as a localised correlation coefficient by Jones (1996). Either
directly, or by noting that γ(x, y) = ρ/(1 − ρ2) for the normal distribution
and that γ transforms in the same way as density functions, in our case we
have

γ(x, y) =
ρ

1 − ρ2

δ1Cǫ1,δ1(x)√
1 + x2

δ2Cǫ2,δ2(y)
√

1 + y2
.

Note that γ(x, y) has the same sign as ρ for all x, y. The way that ρ affects
only the overall size of local dependence and is otherwise divorced from the
influence of the other parameters is a nice feature of this transformation
approach. Also, x- and y-dependence are separated out, so we consider, say,
Lǫ,δ(x) ≡ δCǫ,δ(x)/

√
1 + x2 only. In the symmetric case, L0,δ(0) = δ and it

can readily be shown that L0,δ symmetrically decreases (increases) towards
zero (infinity) if δ < (>) 1. In the general case, Lǫ,δ(0) = δ cosh ǫ, while
both ‘tails’ of Lǫ,δ still go to zero (infinity) if δ < (>) 1.

8. Options and extensions

Readers may be discomfited by some of the specific choices that have been
made in this paper so far. In particular, a question that we have been
asked more than once is: “why is the sinh function at the heart of this
methodology rather than some other monotone function?” Second, it is
clear that the normal distribution is only one of a number of possible choices
for the ‘central distribution’ in this approach. And there is a third, perhaps
less obvious, question that concerns the way in which skewness has been
introduced into our model. In this section, we address each of these issues in
turn.

8.1. Which transformation function?

Introduce a one-to-one onto function H : R → R with H(0) = 0 and write
h(x) = H ′(x) > 0 ∀x. Consider transformations of the form

Z = Tǫ,δ(Xǫ,δ) ≡ H{ǫ + δH−1(Xǫ,δ)}. (8)

This formulation, involving both H and H−1, is key to setting the normal
distribution at the centre of the transformed family and allowing both heavier
and lighter tails. This is most easily seen when ǫ = 0: for small δ, T (X) ∼
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δh(0)H−1(x), and for large δ, T (X/δ) ∼ H(x/h′(0)), division of X by δ being
the ‘suitable scaling’ employed in Section 3.3.

Anticipating the main consideration of Section 8.2, replace the normal
density as the object of transformation by a generic simple symmetric distri-
bution with distribution function G. Apply the ‘H-arcH’ transformation to
obtain the transformed family of distributions with distribution function

G(x) ≡ G(H(ǫ + δH−1(x))). (9)

The following result concerns the conditions required on H so that ǫ and δ
act as skewness and kurtosis parameters in the sense of van Zwet (1964).

Theorem. The parameters ǫ (for fixed δ) and δ (for ǫ = 0) in (9) act as a
pair of skewness and kurtosis parameters in the sense of van Zwet (1964) if
and only if log h is either a convex or a concave function of x.

Proof. Let Gi denote G when the parameters are ǫi, δi, i = 1, 2. Then

G−1
2 (G1(x)) = H(c + dH−1(x))

(independently of G) where c = (ǫ1 − ǫ2)/δ2 and d = δ1/δ2. Then,

tc,d(x) ≡ d2G−1
2 (G1(x))

dx2
= p(x)

{

d(log h)′(c + dH−1(x)) − (log h)′(H−1(x))
}

where p(x) = dh(c + dH−1(x))/h2(H−1(x)) > 0 ∀x. For fixed δ, i.e. d = 1,
consider the case c > 0 i.e. ǫ1 > ǫ2; then tc,1(x) > 0, the requirement for ǫ
to act as a skewness parameter, corresponds precisely to (log h)′(x) > 0 for
all x. Likewise, c < 0 requires (log h)′(x) < 0 for all x. Now fix c = 0 for
the symmetric case ǫ1 = ǫ2 = 0. For δ to be a kurtosis parameter we need
t0,d(x) > 0 for x > 0 and for this it is certainly also sufficient that log h is
increasing if d > 1 or that log h is decreasing if d < 1. �

Another requirement that potentially further narrows the field of poten-
tial H ’s is unimodality of all members of the resulting family of distribu-
tions. We are keen on this since we believe that we are in the business of
providing ‘component’ unimodal distributions which can be combined, in-
terpretably, by mixture modelling if multimodality is present in one’s data.
Unfortunately, unimodality seems to require verification on a case-by-case
basis (though it was used to disqualify H(x) = sinh−1(x) for normal G in

33



Section 3.4). That said, it reinforces the requirement that h(x) > 0 ∀x else,
if h(x0) = 0 for some x0, the density associated with distribution (9) will be
zero at x = H((x0−ǫ)/δ) and nonzero to either side; this removes candidates
of the form H(x) = |x|γ, γ > 0.

Other considerations include explicit invertibility of H , differentiability
(perhaps), and the type and breadth of effect on tails. We have not been
able to come up with any viable alternative to H(x) = sinh(x).

8.2. Which central density?

The normal distribution is, of course, but one particular choice for the ‘cen-
tral’ simple symmetric distribution mentioned in Section 8.1; let this dis-
tribution have density g. Then the transformed family of distributins has
densities of the form

gǫ,δ(x) =
δCǫ,δ(x)√

1 + x2
g {Sǫ,δ(x)} . (10)

Several of the properties developed for the normal distribution hold immedi-
ately for other g too: examples include its distribution and quantile function
(in terms of G and G−1), skewness and kurtosis ordering properties, etc;
some properties need to be investigated on a case-by-case basis. A sufficient
condition for unimodality is that

1 + x(1 + x2)(log g)′(x) + (1 + x2)2(log g)′′(x) < 0 ∀x

which has been satisfied for all the g we have considered.
A major reason for choosing a different g would be if testing for some

other simple symmetric distribution, such as the logistic, were of interest.
We would expect likelihood ratio testing within a g-based family to perform
as well as it does for the normality case in Section 5.

A second consideration might be the tailweight properties of g-based fam-
ilies. For small δ, and ignoring all constants,

gǫ,δ(|x|) ∼ |x|δ−1g(|x|δ) as |x| → ∞;

for example, simple exponential tails like those of the logistic lead to ‘Weibull-
type’ tails, |x|δ−1 exp(−|x|δ), while power tails, of the form g(|x|) ∼ |x|−(α+1),
α > 0, lead to ‘t-type’ power tails for gǫ,δ of the limiting form |x|−(ν+1)
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where ν = αδ. The Cauchy distribution as g leads to the particularly simple
expression

gǫ,δ(x) =
δ

π

1√
1 + x2 Cǫ,δ(x)

.

But centring the family of distributions at such a heavy-tailed case has conse-
quences for the lightness of tails as δ → ∞. In the symmetric case, ǫ = 0, the
Cauchy-based family tends to the hyperbolic secant density {π cosh(x)}−1,
which is both intriguing and indicative of relatively heavy ‘light’ tails; they
are of simple exponential form.

Again, aside from distributional testing requirements, it is difficult to see
beyond the normal-based family as the most useful general tool.

8.3. Which method of introducing skewness?

Formulae (3) and (4) suggest an alternative method of introducing skewness
into the symmetric sinh-arcsinh transformation. Instead of Sǫ,δ(X) as defined
there, consider

Sδ,γ(X) ≡ 1

2

{

exp(δ sinh−1(X)) − exp(−γ sinh−1(X))
}

, (11)

where δ, γ > 0. Then define Xδ,γ by Z = Sδ,γ(Xδ,γ), Xδ,γ having density fδ,γ,
not shown to save space. Note that (the same) symmetric cases now arise
from setting γ = δ. In fact, δ now controls the weight of the right-hand
tail of the distribution, while γ controls the left-hand tail in the same way.
Skewness arises implicitly from the imbalance between the tails when δ 6= γ:
if δ < γ, the left-hand tail is lighter than the right and the resulting skewness
is positive, if δ > γ, negative skewness ensues. This can be contrasted with
the way in which skewness in (2) is introduced and controlled by differential
scaling of tails. It is clear that fγ,δ(x) = fδ,γ(−x).

Many properties of these skew sinh-arcsinh distributions can also be deter-
mined although the family is a little less tractable than is that based on Sǫ,δ.
Briefly, the distribution function and quantile functions associated with (11)
— in the normal case — are Fδ,γ(x) = Φ(Sδ,γ(x)) and Qδ,γ(u) = S−1

δ,γ (Φ−1(u));
the latter is not explicitly invertible in general although its inverse is easy to
compute. A nice property of the family based on (11) is that its median is
always zero. We have much numerical evidence that fγ,δ remains unimodal
for all values of δ, γ > 0, but have been unable to prove it. Plots of the Bow-
ley skewness (not shown) indicate that the entire range of Bowley skewness
values, from −1 to +1, is achieved within this family.
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Tests of normality and symmetry can, of course, be based on fitting fγ,δ

in the same way as they were in Sections 5 and 6 for fǫ,δ. We repeated
all the simulations reported there for the alternative skewness family too.
Much the most striking feature of the results is their extreme similarity; in
almost all cases, results like those shown in Figs 5 to 10 provide excellent
approximations to the equivalent results for the alternative family. In terms
of testing normality, and from the viewpoint of the alternative family, we
might claim a slightly better holding of size for n ≥ 100 but slightly worse for
n ≤ 50, with slightly lower power for heavy-tailed distributions and slightly
higher power for lighter-tailed distributions. But emphasis here is on the
word ‘slightly’. Something similar was observed in the context of testing
symmetry save for one exceptional case: the test based on fγ,δ was rather
less able to maintain size than was the test based on fǫ,δ for the (heavy-tailed)
t2 distribution. (A nominal 5% test exhibited significance levels around 10%
for the LRT based on fǫ,δ, rising to 20% and more for the test based on fγ,δ.)

All told, however, there is relatively little to choose between fǫ,δ and fγ,δ

in many respects. We have focussed on the former in this paper primarily
because of its greater tractability and secondarily because of minor practical
advantages.

9. Discussion

We would like to argue that, far from being ‘just another’ four-parameter
family of distributions on the real line with rather similar properties, the dis-
tributions of this paper fill a niche that is currently very sparsely populated.
On the one hand, many if not most families of distributions on R concentrate
on providing tailweights heavier than those of the normal (often with the nor-
mal distribution as their lightest tailed limit). Examples include stable laws
and various ‘skew-t’ distributions which include Student’s t distributions as
their symmetric special cases; see, for example, Jones and Faddy (2003) and
Azzalini and Genton (2008). On the other hand, few families of distribu-
tions on R have much in the way of light-tailed membership. An exception
is the exponential power distributions (Box and Tiao, 1973, Tadikamalla,
1980) and their natural two-piece skew counterparts. The new distributions
fill something of a gap between these two sorts of distributions. Like skew-t
distributions, they allow tails considerably heavier than the normal, although
their tails are not quite as heavy as the t’s power tails can be, but unlike
skew-t distributions they allow lighter than normal tails also. Like exponen-
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tial power distributions, the new distributions allow much lighter tails than
normal (though not as light as the uniform limit of the exponential power)
and heavier tails than the normal, but in the latter case escape the purely
exponential nature of the exponential power tails. We reiterate that the
sinh-arcsinh distributions achieve these properties in a manner something
like an amalgamation of Johnson SU and sinh-normal distributions. Indeed,
the sinh-arcsinh distribution can be seen as a generalised Johnson distribu-
tion where the sinh transformation (as in Johnson, 1949) is applied not to
the normal distribution but to the sinh-normal distribution!

It is also especially appealing, in our view, to have such a family of dis-
tributions ‘centred’ on the normal distribution in order, as exemplified in
Section 5, to allow standard likelihood ratio testing for normality against
skew and light- and heavy-tailed distributions within the sinh-arcsinh fam-
ily. This is in contrast to families in which the normal distribution is a
limiting case. Moreover, the resulting tests are widely applicable: they turn
out to compete with, and essentially outperform, existing omnibus tests of
normality against alternatives not in the sinh-arcsinh family. (Essentially,
of course, the tests work by approximating the distribution of the data by
a member of the sinh-arcsinh family, which proves to be an adequate ap-
proximation at least for most unimodal densities.) Similar remarks apply to
testing for symmetry via LRTs within this class.

Finally, this paper has been rather long in gestation and the first author
has talked on the topic a number of times, including Jones (2005). It is
therefore the case that the sinh-arcsinh distribution has already been im-
plemented (under the acronym ‘shash’) in the GAMLSS software package
(Stasinopoulos and Rigby, 2007).
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